ENHANCED SIX OPERATIONS AND BASE CHANGE THEOREM FOR

HIGHER ARTIN STACKS

YIFENG LIU AND WEIZHE ZHENG

ABSTRACT. In this article, we develop a theory of Grothendieck’s six operations for derived
categories in étale cohomology of Artin stacks, for both torsion and adic coefficients. We prove
several desired properties of the operations, including the base change theorem in derived
categories. This extends many previous theories on this subject, including the one developed
by Laszlo and Olsson, in which the operations are subject to more assumptions and the base
change isomorphism is only constructed on the level of sheaves. Moreover, our theory works
for higher Artin stacks as well. In addition, we define perverse t-structures on higher Artin
stacks for general perversity, extending Gabber’s work on schemes.

Our method differs from previous approaches, as we exploit the theory of stable co-
categories developed by Lurie. We enhance derived categories, functors, and natural iso-
morphisms to the level of co-categories and introduce co-categorical (co)homological descent.
To handle the issue of “homotopy coherence”, we develop a general technique for gluing sub-
categories of co-categories and several other co-categorical techniques. We obtain categorical
equivalences between simplicial sets associated to certain multisimplicial sets. Such equiva-
lences can be used to construct functors in different contexts. One of our category-theoretical
results generalizes Deligne’s gluing theory developed in the construction of the extraordinary
pushforward operation in étale cohomology of schemes.
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INTRODUCTION

This article is an amalgamation, with minor improvements, of the following three preprints
we previously posted on the arXiv:
o Gluing restricted nerves of co-categories, arXiv:1211.5294,
e Enhanced six operations and base change theorem for higher Artin stacks,
arXiv:1211.5948,


http://arxiv.org/abs/1211.5294
http://arxiv.org/abs/1211.5948
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e Enhanced adic formalism and perverse t-structures for higher Artin stacks,
arXiv:1404.1128.

Derived categories in étale cohomology on Artin stacks and Grothendieck’s six operations
(also known as six-functors) between such categories have been developed by many authors
including [67] (for Deligne-Mumford stacks), [50], [5], [57] and [47]. These theories all have some
restrictions. In the most recent and general one [47] by Laszlo and Olsson on Artin stacks, a
technical condition was imposed on the base scheme which excludes, for example, the spectra
of certain fields.! More importantly, the base change isomorphism was constructed only on the
level of (usual) cohomology sheaves [47, §5]. The Base Change theorem is fundamental in many
applications. In the Geometric Langlands Program for example, the theorem has already been
used on the level of perverse cohomology. It is thus necessary to construct the Base Change
isomorphism not just on the level of cohomology, but also in the derived category. Another
limitation of most previous works is that they dealt only with constructible sheaves. When
working with morphisms locally of finite type, it is desirable to have the six operations for more
general sheaves.

In this article, we develop a theory that provides the desired extensions of previous works.
Instead of the usual unbounded derived category, we work with its enhancement, which is a stable
oo-category in the sense of Lurie [53, Definition 1.1.1.9]. This makes our approach different from
previous ones. We construct functors and produce relations in the world of co-categories, which
themselves form an oo-category. We start by upgrading the known theory of six operations for
(coproducts of) quasi-compact and separated schemes to co-categories. The coherence of the
construction is carefully recorded. This enables us to apply oco-categorical descent to carry over
the theory of six operations, including the Base Change theorem, to algebraic spaces, higher
Deligne-Mumford stacks and higher Artin stacks.

0.1. Results for torsion coefficients. In this section, we will state our results only in the
classical setting of Artin stacks on the level of usual derived categories (which are homotopy
categories of the derived oo-categories), among other simplifications. We refer the reader to
Chapter 6 for a list of complete results for higher Deligne-Mumford stacks and higher Artin
stacks, stated on the level of stable co-categories.

By an algebraic space, we mean a sheaf in the big fppf site satisfying the usual axioms [1, 025Y]:
its diagonal is representable (by schemes); and it admits an étale and surjective map from a
scheme (in Schy; see §0.7).

By an Artin stack, we mean an algebraic stack in the sense of [1, 0260]: it is a stack in
(1-)groupoids over (Schi)gpr; its diagonal is representable by algebraic spaces; and it admits
a smooth and surjective map from a scheme. In particular, we do not assume that an Artin
stack is quasi-separated. Our main results are the construction of the six operations on the
derived categories of sheaves in the étale cohomology of Artin stacks and the expected relations
among them. In what follows, A denotes a (unital commutative) ring, or more generally, a ringed
diagram in Definition 3.2.5.

To an Artin stack X, we associate a triangulated category D(X, A). If X is Deligne-Mumford,
then this is simply the unbounded derived category D(X¢;, A) of Mod(Xg, A), the Abelian cate-
gory of (Xet, A)-modules, where X is the étale topos associated to X. In general, although our
construction does not make use of the lisse-étale topos, D(X, A) turns out to be equivalent to a
full subcategory of D(Xjis.¢t, A), the unbounded derived category of (Xjs.et, A)-modules, where
Xiis.st is the lisse-étale topos Xjis¢ associated to X. Recall that an (Xjs.et, A)-module .F is
equivalent to an assignment to each smooth morphism v: Y — X with Y an algebraic space a

IFor example, the field k(z1,x2,...) obtained by adjoining countably infinitely many variables to an alge-
braically closed field k in which £ is invertible.
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(Yer, A)-module %, and to each 2-commutative triangle

Y’ 4f> Y
PN
X
with v, v’ smooth and Y, Y’ being algebraic spaces, a morphism 7,: f*.%, — %, that is an
isomorphism if f is étale, such that the collection {7,} satisfies a natural cocycle condition
[50, Lemme 12.2.1]. An (Xjis¢t, A)-module # is Cartesian if in the above description, all mor-
phisms 7, are isomorphisms [50, Définition 12.3]. Let Dcart(Xiisst, A) be the full subcategory
of D(Xyis6t, A) spanned by complexes whose cohomology sheaves are all Cartesian. We have an
equivalence of categories D(X, A) ~ Deart (Xiisat, A)-
Let f: Y — X be a morphism of Artin stacks. We define the following four operations in §6.2:
7 DX A) = D(Y, A),
f+: D(Y,A) = D(X,A),
—®x —: D(X,A) x D(X,A) = D(X, A),
X, M) x D(X,A) = D(X,A).
The pairs (f*, fi) and (— @« K, Homy (K, —)) for every K € Deart(Xiisst, A) are pairs of adjoint
functors.
To state the other two operations, we fix a nonempty set O of rational primes. A ring is O-
torsion [3, Exposé ix, Définition 1.1] if each element of it is killed by an integer that is a product
of primes in [J. An Artin stack X is (-coprime if there exists a morphism X — Spec Z[~]. If

X and Y are O-coprime (resp. Deligne-Mumford), f: Y — X is locally of finite type, and A is
O-torsion (resp. torsion), then there is another pair of adjoint functors:

fi: D(Y,A) = D(X, A),
f':D(X,A) = D(Y,A).

Next we list some properties of the six operations. We refer the reader to §6.2 for a more
complete list.

Homy: D(

Theorem 0.1.1 (Kiinneth Formula, Theorem 6.2.1). Let A be a O-torsion (resp. torsion) ring,
and

Y~y Ty,

N

xl P1 X P2 DC2

a diagram of O-coprime Artin stacks (resp. of arbitrary Deligne—Mumford stacks) that exhibits Y
as the limit Y1 xx, X Xx, Yo, where f1 and fa are locally of finite type. Then there is a natural
isomorphism of functors:

filal = ®ya3—) = (pifu—) ®x (P3f2—): D(Y1,A) x D(Y2,A) = D(X, A).
Corollary 0.1.2 (Base Change). Let A be a O-torsion (resp. a torsion) ring, and

W Z
qi ip
Y X

g
—_—

f

—
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a Cartesian diagram of O-coprime Artin stacks (resp. of arbitrary Deligne—Mumford stacks)
where p is locally of finite type. Then there is a natural isomorphism of functors:

[fopr~qog :D(Z,A) — D(Y,A).

Corollary 0.1.3 (Projection Formula). Let A be a O-torsion (resp. torsion) ring, and f: Y — X
a morphism locally of finite type of O-coprime Artin stacks (resp. of arbitrary Deligne—Mumford
stacks). Then there is a natural isomorphism of functors:

fil=®y f*=) ~ (fi—-) @x —: D(Y,A) x D(X,A) = D(X, A).

Theorem 0.1.4 (Trace map and Poincaré duality, Theorem 6.2.9). Let A be a O-torsion ring,
and f:Y — X a flat morphism locally of finite presentation of (-coprime Artin stacks. Then

(1) There is a functorial trace map
Try: 720 fily(d) = 72° fi(f*Ax)(d) — Ax,

where d is an integer larger than or equal to the dimension of every geometric fiber of
f; Ax and Ay denote the constant sheaves placed in degree 0; and (d) = [2d](d) is the
composition of the shift by 2d and the d-th power of Tate’s twist.

(2) If f is moreover smooth, then the induced natural transformation

ug: fio f*(dim f) — idx

is a counit transformation, where idy is the identity functor of D(X, A). In other words,
there is a natural isomorphism of functors:

fH(dim f) =~ f': D(X,A) = D(Y, A).
Corollary 0.1.5 (Smooth Base Change, Corollary 6.2.10). Let A of a O-torsion ring, and

w22
y— Lo x

a Cartesian diagram of O-coprime Artin stacks where p is smooth. Then the natural transfor-
mation of functors

p*fe = 9:¢": D(Y,A) = D(Z,A)
is a natural isomorphism.

Theorem 0.1.6 (Descent, Corollary 6.2.14). Let A be a ring, f:Y — X a morphism of Artin
stacks, and y: 93 — Y a smooth surjective morphism. Let YT be the Cech nerve of y with the
morphism yn: Y5 = YT, =Y. Put f, = foyn: Y — X.

(1) For every complex K € DZ°(Y, A), there is a convergent spectral sequence
EVY = HY(fpay,K) = HPT9 £ K.

(2) If X is O-coprime; A is O-torsion; and f is locally of finite type, then for every complex
K € DSO(Y, A), there is a convergent spectral sequence

EPY = HI(f_py' K) = HPTIfK.

Remark 0.1.7. Note that even in the case of schemes, Theorem 0.1.6(2) seems to be a new result.
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To state our results for constructible sheaves, we work over a [J-coprime base scheme S that
is either quasi-excellent finite-dimensional or regular of dimension < 1. We consider only Artin
stacks X that are locally of finite type over S. Let A be a Noetherian [J-torsion ring. We let
Deons(X, A) € D(X, A) denote the full subcategories spanned by those objects whose pullback to
every scheme X, of finite type over S, has constructible cohomology sheaves in the usual sense.
Let Dggs(fx, A) (resp. Déggs(x, A)) be the full subcategory of Deons(X, A) spanned by complexes
whose cohomology sheaves are locally bounded from below (resp. from above). We show in §6.4
that the six operations mentioned previously restrict to the following ones (see Proposition 6.4.4
and Proposition 6.4.5 for precise statements):

J7+ Deons (X, A) = Deons(Y, A),

F*+ Deons(X, A) = Deons (4, A),
— @x —: DX, A) x DX, A) = DL (X, A),
Homy : D)L(X, A)°P x D) (X, A) — D) (X, A).

cons cons cons

If f is quasi-compact and quasi-separated, then there are two more:

fo: D) (Y, A) = D) (X, A),

f! . cons(’g A) - Dggns(x A)

We will also show that when the base scheme, the coefficient ring, and the morphism f
are all in the range of [47], our operations for constructible complexes are compatible with those
constructed by Laszlo and Olsson on the level of usual derived categories. In particular, Corollary
0.1.2 implies that their operations satisfy Base Change in derived categories, which was left open
in [47].

0.2. Why oo-categories? The oco-categories in this article refer to the ones studied by A. Joyal
n [42] and [43] (where they are called quasi-categories), J. Lurie [52], et al. Namely, an oo-
category is a simplicial set satisfying the right lifting properties with respect to inner horn
inclusions [52, Definition 1.1.2.4]. In particular, they are models for (oo, 1)-categories, that is,
higher categories whose n-morphisms are invertible for n > 2. There are also other models
for (oo, 1)-categories such as topological categories, simplicial categories, complete Segal spaces,
Segal categories, model categories, and, in a looser sense, differential graded (DG) categories
and A.o-categories. We address two questions in this section. First, why do we need (oo, 1)-
categories instead of (usual) derived categories? Second, why do we choose this particular model
of (00, 1)-categories?

To answer these questions, let us fix an Artin stack X and an atlas u: X — X, that is, a
smooth and surjective morphism with X an algebraic space. We denote by Modcart (Xiisst, A)
the Abelian category of Cartesian (Xjis¢t, A)-modules. Let py: X x¢ X — X (a = 1,2) be
the two projections. We know that for # € Modcart(Xiis-st, A), there is a natural isomorphism
o piutF = piu*F satisfying a cocycle condition. Conversely, an object ¥ € Mod(X¢, A)
such that there exists an isomorphism o: pi¥ — p5¥ satisfying the same cocycle condition is
isomorphic to u*# for some # € Modcart (Xiisét, A). More formally, Modcart (Xiisst, A) is the
(2-)limit of the following diagram

pi .
MOd(Xét7A) — MOd((X Xx X)ét, A) —_—> MOd((X Xx X Xx X)ét7A)
P3

in the 2-category of Abelian categories. Therefore, to study Modcart(Xiis-ét, A), we only need
to study Mod(Xg, A) for (all) algebraic spaces X in a “2-coherent way”, that is, we need to
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track down all the information of natural isomorphisms (2-cells). Such 2-coherence is not more
complicated than the one in Grothendieck’s theory of descent [33].

One may want to apply the same idea to derived categories. The problem is that the de-
scent property mentioned previously, in its naive sense, does not hold anymore, since otherwise
the classifying stack BG,, over an algebraically closed field would have finite cohomological di-
mension, which is false. In fact, when forming derived categories, we throw away too much
information on the coherence of homotopy equivalences or quasi-isomorphisms, which causes the
failure of such descent. A descent theory in a weaker sense, known as cohomological descent
[3, Exposé vbis] and due to Deligne, does exist partially on the level of objects. It is one of the
main techniques used in Olsson [57] and Laszlo-Olsson [47] for the definition of the six opera-
tions on Artin stacks in certain cases. However, it has the following restrictions. First, Deligne’s
cohomological descent is valid only for complexes bounded from below. Although a theory of
cohomological descent for unbounded complexes was developed in [47], it comes at the price of
imposing further finiteness conditions and restricting to constructible complexes when defining
the remaining operators. Second, relevant spectral sequences suggest that cohomological descent
cannot be used directly to define !-pushforward.

A more natural solution can be reached once the derived categories are “enhanced”. Roughly
speaking (see Proposition 5.3.5 for the precise statement), writing

Xo=X Xy XX ((n—|— 1)—f01d)7

we define D(X, A) to be the limit of following cosimplicial diagram

*

p
D(Xg.e0,A) == D(Xy 61, A) —F D(Xp e, A) —= ---

P3

in a suitable oco-category of presentable stable co-categories. This is completely parallel to the
descent property for module categories. Here D(X,, ¢, A) is the derived oco-category of the
Grothendieck Abelian category Mod (X, ¢, A). It is a presentable stable co-category that en-
hances D(X,, ¢¢, A). We then define D(X, A) to be the homotopy category of D(X,A). Strictly
speaking, the previous diagram is incomplete in the sense that we do not mark all the higher
cells in the diagram, that is, all natural equivalences of functors, “equivalences between natural
equivalences”, etc. In fact, there is an infinite hierarchy of (homotopy) equivalences hidden be-
hind the limit of the previous diagram, not just the 2-level hierarchy in the classical case. To
deal with such kind of “homotopy coherence” is the major difficulty of the work, that is, we need
to find a way to encode all such hierarchy simultaneously in order to make the idea of descent
work. In other words, we need to work in the totality of all co-categories of concern.

It is possible that such a descent theory (and other relevant higher-categorical techniques
introduced below) can be realized by using other models for higher categories. We have chosen
the theory developed by Lurie in [52], [53] for its elegance and availability. Precisely, we will
use the techniques of the (marked) straightening/unstraightening construction, Adjoint Functor
Theorem, and the oo-categorical Barr—Beck Theorem. Based on Lurie’s theory, we develop
further co-categorical techniques to treat the homotopy-coherence problem mentioned as above.
These techniques would enable us to, for example,

e find a coherent way to decompose morphisms (§1.4);

e gluing data from Cartesian diagrams to general ones (§1.5);
e take partial adjoints along given directions (§2.2);

e make a coherent choice of descent data (§4.2).

In §0.4, we will have a chance to explain some of them.
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We would also like to remark that Lurie’s theory has already been used, for example, in [7]
to study quasi-coherent sheaves on certain (derived) stacks with many applications. This work,
which studies lisse-étale sheaves, is another manifestation of the power of Lurie’s theory.

0.3. Results for adic coefficients. In this section, we discuss the adic formalism and adic
analogues of results in §0.1. This extends many previous theories on the subject, including SGA 5
[32], Deligne [17], Ekedahl [18] (for schemes), Behrend [5] and Laszlo—Olsson [48]. We prove,
among other things, the base change theorem in derived categories, which was previous known
only on the level of sheaves [48] (and under other restrictions). Another limitation of the existing
theories, including those for schemes, is the constructibility assumption. This assumption is not
often met, for example, when considering morphisms between Artin stacks that are only locally
of finite type. By contrast, the adic formalism developed in this article applies to unrestricted
derived categories.

As in §0.1, we will state our constructions and results only in the classical setting of Artin
stacks on the level of usual derived categories (which are homotopy categories of the derived oo-
categories), among other simplifications. See Chapter 7 for the complete results for higher Artin
stack higher (and higher Deligne-Mumford stacks), stated on the level of stable co-categories.

Let X be an Artin stack and let A = (2, A) be a ringed diagram, that is, a functor A from
the opposite of a partially ordered set = to the category of unital commutative rings. A typical
example is the projective system

e 2T T — - — DT,

where / is a fixed prime number and the transition maps are natural projections. Recall that for
every £ € Z, D(X, A(§)) has a natural oco-categorical enhancement D (X, A(£)). In fact, there is
a functor N(Z)°P — Cat, from the nerve of Z°P to the co-category of co-categories sending & to
D(X, A(€)), with the transition functors being (derived) extension of scalars. We define

N(2)°r

and let D(X, \), be its homotopy category. It is crucial that the limit be taken on the level of
oo-categories.

Let f: Y — X be a morphism of Artin stacks. We then define operations:

DX, A)a — DY, Na,
f*a: D(ld’ )\)a — D(x7 )‘)aa
— ®x —: D(X, A)a X D(X, A)a = D(X, A)a,
FHomi: D(X, NP x D(X, A)a — D(X, N)a.

The pairs (f*?, fwa) and (— éx K, Homj (K, —)) for every K € D(X,\), are pairs of adjoint
functors.

To state the other two operations, we fix a nonempty set [J of rational primes. If X and Y are
O-coprime, f: Y — X is locally of finite type, and A is a [J-torsion ringed diagram, then there is

another pair of adjoint functors:
fra: D(Y, N)a = D(X, A)a,
F:D(X,A)a = DY, Aa-
Among these functors, f*, fi, and — (%)x — are naturally defined from the limit construction of

D(—, A)a. These six operations satisfy the similar properties as in the non-adic version as stated
in §0.1.
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We show that D(X, \), is canonically equivalent to the full subcategory of D(X, \) spanned
by so-called adic complemes which admits a colocalization functor Ry : D(X,A) = D(X, A),.

Moreover, f**, fi, and — ®x — are simply restrictions of f*, fi and — ®x —, respectively, as
they preserve adic complexes. For the other three, we have f., = Ry o fi, f'* = Ry o f' and
Hom$, = Ry o Homy. We refer the reader to §7.2 and §7.3 for more details.

The adic formalism introduced above does mot assume the constructibility at the first place.
In other words, we are free to talk about adic complexes for any sheaves. In particular, in terms
of Grothendieck’s fonctions-faisceaux dictionary, we make sense of divergent integrals on stacks
over finite fields. Those appear for example in [22].

In §7.6, we study a special setup, the m-adic formalism. Let A be a ring and m C A a principal
ideal generated by a nonzerodivisor. The pair (A, m) gives rise to a ringed diagram A, with the
underlying category N = {0 — 1 — 2 — ---} and A, = A/m""!. This setup is sufficient for
most applications. The m-adic formalism enjoys very nice properties. For example, the adic
complexes in this case are stable under the six operations. In §7.7, we show that our theory of
constructible adic formalism coincides with Laszlo—Olsson [49] under their assumptions.

0.4. What do we need to enhance? In Section 0.2, we mentioned the enhancement D(X, A)
of a single triangulated category D(X, A), namely, a stable oo-category whose homotopy cate-
gory (which is an ordinary category) is naturally equivalent to D(X,A). The enhancement of
operations is understood in the similar way. For example, the enhancement of *-pullback for
f:Y — X is an exact functor

(0.1) f o DGA) — DY, A)

such that the induced functor
hf*: D(X,A) = D(Y,A)
is the *-pullback functor of usual derived categories.

However, such enhancement is not enough for us to do descent. The reason is that we need to
put all schemes and then algebraic spaces together. Let us denote by Sch?**P the category of
coproducts of quasi-compact and separated schemes. The enhancement of *-pullback for schemes
in the strong sense is a functor:

(0.2) sepac- S BO* : N(8chd®sP)or _, prly

where N denotes the nerve functor (see the definition following [52, Definition 1.1.2.1]) and Pr
is a certain oco-category of presentable stable oco-categories, which will be specified later. Then
(0.1) is just the image of the edge f: Y — X if f belongs to Sch9°*P. The construction of (0.2)
(and its right adjoint which is the enhancement of x-pushforward) is not hard, with the help
of the general construction in [53]. The difficulty arises in the enhancement of !-pushforward.
Namely, we need to construct a functor:

schac=» EO, 1 N(8ch®P) o — Prls

where N(8ch9°*P)  is the subcategory of N(8ch*?) only allowing morphisms that are locally
of finite type. The basic idea is similar to the classical approach: using Nagata compactification
theorem. The problem is the following: for a morphism f:Y — X in 8ch9*P locally of finite
type, we need to choose (non-canonically!) a relative compactification

Y ———

I i

X<7
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where 4 is an open immersion and f is proper, and define f; = py o f, o4 (in the derived sense).
It turns out that the resulting functor of usual derived categories is independent of the choice,
up to natural isomorphism. First, we need to upgrade such natural isomorphisms to natural
equivalences between oco-categories. Second and more importantly, we need to “remember” such
natural equivalences for all different compactifications, and even “equivalences among natural
equivalences”. We immediately find ourselves in the same scenario of an infinite hierarchy of
homotopy equivalences again. To handle this kind of homotopy coherence, we develop a technique
called multisimplicial descent in §1.4, which can be viewed as an co-categorical generalization of
[3, Exposé xvii §3.3].

This is not the end of the story since our goal is to prove all expected relations among six
operations. To use the same idea of descent, we need to “enhance” not just operations, but also
relations as well. To simplify the discussion, let us temporarily ignore the two binary operations
(® and Hom) and consider how to enhance the “Base Change theorem” which essentially involves
*+-pullback and !-pushforward. We define a simplicial set 65 {Q}N(Schqc'sep)‘j%’;tu in the following
way:

e The vertices are objects X of 8ch“°P.
e The edges are Cartesian diagrams

(0.3) Xo1 —2> Xoo

f
X1 —— Xqo
with p locally of finite type, whose source is Xy and target is X77.

e Simplices of higher dimensions are defined in a similar way.

Note that this is not an oco-category. Assuming that A is torsion, the enhancement of the Base
Change theorem (for 8ch9“**?) is a functor

(0.4) scnae-d BOT 1 03 15y N(8chi®*P)ga1t, — Prly
sending the edge

Xoo —%> Xoo resp. X131 — Xoqo

l l idl iid

X 4> X, X1y~ Xoo

to pr: D(Xooet, A) = D( X116, A) (resp. f*: D(Xooet, A) = D(X11,6t,A)). The upshot is that
the image of the edge (0.3) is a functor D(Xgg ¢, A) = D(X11,6t, A) which is naturally equivalent
to both f* o p; and ¢ o g*. In other words, this functor has already encoded the Base Change
theorem (for 8ch9“*°?) in a homotopy coherent way. This allows us to apply the descent method
to construct the enhancement of the Base Change theorem for Artin stacks, which itself includes
the enhancement of the four operations f*, f., fi and f' by restriction and adjunction. To deal
with the homotopy coherence involved in the construction of Schqc.se/gEO;k7 we develop another
technique called Cartesian gluing in §1.5, which can be viewed as an oco-categorical variant of
(68, §6, §7].

In fact, the source d; {Q}N(Schqc'“p)‘}%gﬁl of the map g.ac«SEO; is categorically equivalent to
the (2, 1)-category of correspondences N(8ch9*P) .. pan.? An object of N(8ch*P) .. pan

23ee Example 1.4.29 for a precise definition.
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is an object of 8ch1**P. A morphism of N(8ch*P).orr: pan from X to Y is a correspondence

vy 2o Xx

)

where ¢ and ¢ are morphisms in 8ch9°**?  with ¢ locally of finite type. The map Schqc.seﬁ\)EOf

(0.4) encoding the four operations and the base change theorem can be equivalently formulated
as a functor
senacs S BEO ot N(8chP) ot pan — Prly

between oo-categories.

We hope that the discussion so far explains the meaning of enhancement to some degree.
The actual enhancement (3.13) constructed in the article is more complicated than the ones
mentioned previously, since we need to include also the information of binary operations, the
projection formula and extension of scalars.

0.5. About this work. As we mentioned at the beginning of the introduction, this article
amalgamates and improves three preprints we initially posted on the arXiv in the years 2012 and
2014.

During the preparation of this article, Gaitsgory [25] and Gaitsgory—Rozenblyum studied
operations for ind-coherent sheaves on DG schemes and derived stacks in the framework of
oo-categories, which was later published as the book [27]. Their work bears some similarity
to ours, but is in a different setup. In particular, their approach uses (co,2)-categories (see
[27, Chapter V]), while we stay in the world of (oo, 1)-categories. We would like to point out
that the alternative formulation of our results using the category of correspondences (see Example
1.4.29 and §6.1) was added after we learned this concept, due to Lurie, from [25].

More recently, Mann [55] improved and simplified our formulation of the six operations,
while working in the context of rigid-analytic geometry.> The readers may consult Lecture
IT in Scholze’s notes [64] for a comparison of our work, [27], and [55].

Since the posting of our work, the co-categorical techniques developed in this (series of) work
have been extensively used to construct (enhanced) six operations in many other contexts. Here
is an incomplete list of such examples:

[55] in the context of rigid-analytic geometry, which has been mentioned above,

[46] and [14] in the context of (stable) motivic homotopy category for algebraic stacks,
[58] in the context of Nisnevich sheaves for divided log spaces,

[35] in the context of étale sheaves on diamonds and v-stacks,

[37] in the context of Dirac geometry,

[38] in the context of representation theory.

On the other hand, the main outcome of this work — the enhanced six operations for étale
sheaves on (higher) Artin stacks — has also been found necessary in many works, for example,
[8], [2], [39], [61], etc. Tt is worth mentioning that the recent work [20] on derived special cycles
on the moduli of shtukas uses our result for genuinely higher Artin stacks.

0.6. Structure of the article. The article has three parts. The first part consists of Chapters
1 and 2, where we focus on the categorical preparation. The second part consists of Chapters
3, 4, 5, and 6, where we develop the theory of enhanced six operations for torsion coefficients.
The third part consists of Chapters 7, 8, and 9, where we develop the theory of enhanced six

3His work relies on results from Chapter 1 of our work.
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operations for adic coefficients, introduce perverse t-structures, and prove some hyperdescent
properties.

In Chapter 1, we develop a general technique for gluing subcategories of oo-categories.

In Chapter 2, we collect further preliminaries on oo-categories, including the technique of
taking partial adjoints (§2.2).

In Chapter 3, we construct enhanced operation maps for ringed topoi and certain schemes.
The enhanced operation maps encode even more information than the enhancement of the Base
Change theorem we mentioned in §0.4. We also prove several properties of the maps that are
crucial for later constructions.

In Chapter 4, we develop an abstract program which we name DESCENT. The program allows
us to extend the existing theory to a larger category. It will be run recursively from schemes
to algebraic spaces, then to Artin stacks, and eventually to higher Artin or Deligne-Mumford
stacks.

In Chapter 5, we run the program DESCENT, and prove certain compatibility between our
theory and existing ones.

In Chapter 6, we write down the resulting six operations for the most general situations and
summarize their properties. We also develop a theory of constructible complexes, based on
finiteness results of Deligne [16, Th. finitude] and Gabber [41, Exposé XIII]. Finally, we show
that our theory is compatible with the work of Laszlo and Olsson [47].

In Chapter 7, we develop the adic formalism for Grothendieck’s six operations, which includes
the most common application, namely, the ¢-adic one.

In Chapter 8, we study perverse t-structures for stacks for both torsion and adic coefficients.

In Chapter 9, we study hyperdescent properties for certain operations on stacks for both
torsion and adic coefficients.

For more detailed descriptions of the individual chapters, we refer to the beginning of these
chapters.

We assume that the reader has some knowledge of Lurie’s theory of co-categories, especially
Chapters 1 through 5 of [52], and Chapters 1 through 4 of [53]. In particular, we assume that
the reader is familiar with basic concepts of simplicial sets [52, §A.2.7]. However, an effort has
been made to provide precise references for notation, concepts, constructions, and results used
in this article, (at least) at their first appearance.

0.7. Conventions and notation.

e All rings are assumed to be commutative with unity; and ring homomorphisms are
assumed to preserve unity.

For set-theoretical issues:

e We fix two (Grothendieck) universes U and V such that U belongs to V. The adjective
small means U-small. In particular, Grothendieck Abelian categories and presentable
oo-categories are relative to U. A topos means a U-topos.

e All rings are assumed to be U-small. We denote by Ring the category of rings in U. By
the usual abuse of language, we call Ring the category of U-small rings.

e All schemes are assumed to be U-small. We denote by Sch the category of schemes
belonging to U and by Sch*! the full subcategory consisting of affine schemes belonging
to U. There is an equivalence of categories Spec: (Ring)°? — Sch*®. The big fppf site
on 8ch*® is not a U-site, so that we need to consider prestacks with values in V. More
precisely, for W = U or 'V, let 8w [52, Definition 1.2.16.1] be the oco-category of spaces
in W. We define the oo-category of prestacks to be Fun(N(Sch®™)or 8y) [52, Notation
1.2.7.2]. However, a (higher) Artin stack is assumed to be contained in the essential
image of the full subcategory Fun(N(8ch®)oP, 8y(). See §5.4 for more details.
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The (small) étale site of an algebraic scheme and the lisse-étale site of an Artin stack
are U-sites.
For every V-small set I, we denote by Set;a the category of I-simplicial sets in V. See
also variants in §1.3. We denote by Caty, the (non V-small) co-category of co-categories
in 'V [52, Definition 3.0.0.1].* (Multi)simplicial sets and co-categories are usually tacitly
assumed to be V-small.

For lower categories:

Unless otherwise specified, a category will be understood as an ordinary category. A
(2, 1)-category C is a (strict) 2-category in which all 2-cells are invertible, or, equivalently,
a category enriched in the category of groupoids. We regard € as a simplicial category
by taking N(Mape(X,Y)) for all objects X and Y of C.

Let €, D be two categories. We denote by Fun(C, D) the category of functors from € to
D, whose objects are functors and morphisms are natural transformations.

Let A be an additive category. We denote by Ch(A) the category of cochain complexes
of A.

Recall that a partially ordered set P is an (ordinary) category such that there is at most
one arrow (usual denoted as <) between each pair of objects. For every element p € P,
we identify the overcategory P, (resp. undercategory P,,) with the full partially ordered
subset of P consisting of elements < p (resp. > p). For p,p’ € P, we identify P,,,,, with
the full partially ordered subset of P consisting of elements both > p and < p’, which is
empty unless p < p'.

Let [n] be the ordered set {0, ...,n} forn > 0, and put [—1] = 0. Let us recall the category
of combinatorial simplices A (resp. AS™, A, Af_") Its objects are the linearly ordered
sets [z] for i > 0 (resp. 0 < i< n,i>—1, —1 < i< n)and its morphisms are given
by (nonstrictly) order-preserving maps. In particular, for every n > 0 and 0 < k < n,
there is the face map d: [n — 1] — [n] that is the unique injective map with k& not in
the image; and the degeneration map s} : [n+ 1] — [n] that is the unique surjective map
such that s} (k+1) = s} (k).

For higher categories:

As we have mentioned, the word co-category refers to the one defined in [52, Definition
1.1.2.4]. Throughout the article, an effort has been made to keep our notation consistent
with those in [52] and [53].

For € a category, a (2, 1)-category, a simplicial category, or an co-category, we denote by
ide the identity functor of €. We denote by N(C) the (simplicial) nerve of a (simplicial)
category C [52, Definition 1.1.5.5]. We identify Ar(€) (the set of arrows of €) with N(C);
(the set of edges of N(€)) if € is a category. Usually, we will not distinguish between
N(€°P) and N(€)°? for C a category, a (2, 1)-category or a simplicial category.

We denote the homotopy category [52, Definition 1.1.3.2, Proposition 1.2.3.1] of an oco-
category C by hC and we view it as an ordinary category. In other words, we ignore the
H-enrichment of hC.

Let € be an co-category, and ¢®: N(A) — C (resp. ce: N(A)° — €) a cosimplicial (resp.
simplicial) object of €. Then the limit [52, Definition 1.2.13.4] @(c') (resp. colimit or
geometric realization li%m(c.)), if it exists, is denoted by lim _ . " (resp. i oy Cn ). It
is viewed as an object (up to equivalences parameterized by a contractible Kan complex)
of C.

4n [52], Catoo denotes the category of small co-categories. Thus, our Cate corresponds more closely to the

notation Cates in [52, Remark 3.0.0.5], where the extension of universes is tacit.
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e Let C be an (oo-)category, and €’ C € a full subcategory. We say that a morphism
f:y— xin € is representable in € if for every Cartesian diagram [52, §4.4.2)

w——2=z

»

y—==x

such that z is an object of €', w is equivalent to an object of €'

e We refer the reader to the beginning of [52, §2.3.3] for the terminology homotopic relative
to A over S. We say that f and f’ are homotopic over S (resp. homotopic relative to A)
if A=0 (resp. S = ).

e Recall that Caty, is the oo-category of V-small oo-categories. In [52, Definition 5.5.3.1],
the subcategories Prl, Prl C Cat,, are defined.” We define subcategories Prl, Prit C
Cats, as follows:

— The objects of both Prly and Pr} are the U-presentable stable co-categories in V
[52, Definition 5.5.0.1], [53, Definition 1.1.1.9].

— A functor F: € — D of presentable stable co-categories is a morphism of Prl if
and only if F' preserves small colimits, or, equivalently, F' is a left adjoint functor
[52, Definition 5.2.2.1, Corollary 5.5.2.9(1)].

— A functor G: € — D of presentable stable co-categories is a morphism of Prf if
and only if G is accessible and preserves small limits, or, equivalently, G is a right
adjoint functor [52, Corollary 5.5.2.9(2)].

We adopt the notation of [52, Definition 5.2.6.1]: for oo-categories € and D, we denote by
Fun®(€, D) (resp. Fun®(C, D)) the full subcategory of Fun(€, D) [52, Notation 1.2.7.2]
spanned by left (resp. right) adjoint functors. Small limits exist in Cats,, Prl, PrR, Prl
and fPrf;. Such limits are preserved by the natural inclusions iPrgJt C Prl C Caty, and
Pl C PrR C Caty by [52, Proposition 5.5.3.13, Theorem 5.5.3.18] and [53, Theorem
1.1.4.4].

e For a simplicial model category A, we denote by A° the subcategory spanned by fibrant-
cofibrant objects.

e For the simplicial model category SetZ of marked simplicial sets in V [52, Notation
3.1.0.2] with respect to the Cartesian model structure [52, Proposition 3.1.3.7, Corollary
3.1.4.4], we fix a fibrant replacement simplicial functor

Fibr: Set{ — (Set})°

via the Small Object Argument [52, Proposition A.1.2.5, Remark A.1.2.6]. By construc-
tion, it commutes with finite products. If € is a V-small simplicial category [52, Def-
inition 1.1.4.1], we let Fibr®: (8et)€ — ((Set£)°)€ C (Setf)® be the induced fibrant
replacement simplicial functor with respect to the projective model structure [52, Remark
A.3.3.1].
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1. GLUING RESTRICTED NERVES OF 00-CATEGORIES

The extraordinary pushforward, one of Grothendieck’s six operations, in étale cohomology
of schemes was constructed in [3, Exposé xvii]. Let 8ch’ be the category of quasi-compact and
quasi-separated schemes, with morphisms being separated of finite type, and let A be a fixed
torsion ring. For a morphism f: Y — X in Sch’, the extraordinary pushforward by f is a functor

fi: DY, A) = D(X, A),

between unbounded derived categories of A-modules in the étale topoi. The functoriality of this
operation is encoded by a pseudofunctor

F: Sch’ — Cat;

sending a scheme X in 8ch’ to D(X,A) and a morphism f: Y — X in Sch’ to the functor
fi. Here Cat; denotes the (2, 1)-category of categories.® There are obvious candidates for the
restrictions Fp and F; of F to the subcategories Sch’p and Sch’; of Sch’ spanned respectively
by proper morphisms and open immersions. The construction of F' thus amounts to gluing the
two pseudofunctors. For this, Deligne developed a general theory for gluing two pseudofunctors
of target Caty [3, Exposé xvii, §3]. Deligne’s gluing theory, together with its variants ([4, §1.3],
[68]), have found several other applications ([4], [13] and [67]).

In this chapter, we study the problem of gluing in higher categories. The technique developed
here can be used to construct Grothendieck’s six operations in different contexts (see, for example,
[62]). In later chapters, we use the gluing technique to construct higher categorical six operations
in étale cohomology of higher Artin stacks and prove the base change theorem. Even for 1-Artin
stacks and ordinary six operations, this theorem was previously only established on the level of
sheaves (and subject to other restrictions) ([47] and [48]). Our construction of the six operations
makes essential use of higher categorical descent, so that even if one is only interested in the
six operations and base change in ordinary derived categories, the enhanced version is still an
indispensable step of the construction. As a starting point for the descent procedure, we need an
enhancement of the pseudofunctor F' above. In the language of co-categories developed in [52],
such an enhancement is a functor

F>: N(8ch) — Cats

between oo-categories, where N(8ch’) is the nerve of Sch’ and Cat,, denotes the co-category of
oo-categories. For every scheme X in 8ch’, F*°(X) is an oo-category D (X, A), whose homotopy
category is equivalent to D(X, A). For every morphism f: Y — X in 8ch’, the image F'>°(f) is
a functor
2 DY,A) - D(X,A)

such that the induced functor hf> between homotopy categories is equivalent to the classical fi.

One major difficulty of the construction of F*° is the need to keep track of coherence of all
levels. By Nagata compactification [11], every morphism f in 8ch’ can be factorized as p o j,
where j is an open immersion and p is proper. One can then define F(f) as Fp(p) o Fy(j). The
issue is that such a factorization is not canonical, so that one needs to include coherence with
composition as part of the data. Since the target of F' is a (2, 1)-category, in Deligne’s theory

6A (2, 1)-category is a 2-category in which all 2-cells are invertible.
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coherence up to the level of 2-cells suffices. The target of F'*° being an co-category, we need to
consider coherence of all levels.

Another complication is the need to deal with more than two subcategories. This need is
already apparent in [67]. We will give another illustration in the proof of Corollary 1.0.4 below.

To handle these complications, we propose the following general framework. Let € be an
(ordinary) category and let k > 2 be an integer. Let &1,...,&r C Ar(C) be k sets of arrows
of €, each containing every identity morphism in €. In addition to the nerve N(C) of C, we
define another simplicial set, which we denote by (5ZN(C)‘§‘1“ ¢,- 1ts n-simplices are functors
[n]¥ — € such that the image of a morphism in the i-th direction is in &; for 1 < i < k, and the
image of every square in direction (7, j) is a Cartesian square (also called pullback square) for
1 <i < j < k. For example, when k& = 2, the n-simplices of 5§N(G)‘éalrfg2 correspond to diagrams

(1.1) €00 Co1 e Con
€10 C11 ce Cin
Cno Cnil te Cnn

where vertical (resp. horizontal) arrows are in £; (resp. £2) and all squares are Cartesian. The
face and degeneracy maps are defined in the obvious way. Note that 5,’;N(€)‘é°‘1” ¢, 18 seldom an
oo-category. It is the simplicial set associated to a k-simplicial set N(C)g*" . . The latter is a
special case of what we call the restricted multisimplicial nerve of an (co-)category with extra
data (Definition 1.3.14).

Let &y C Ar(C) be a set of arrows stable under composition and containing €; and €5. Then
there is a natural map

(1.2) g: 5ZN(G)§ir,t82,83,...,ek — 5271N(e)§%r,t83,...,ek
of simplicial sets, sending an n-simplex of the source corresponding to a functor [n]* — €, to its
partial diagonal

]k71 diagxid[n]k,g ]k

)"~ =[] x [0 ————[n

which is an n-simplex of the target.

We say that a subset &€ C Ar(C) is admissible (Definition 1.3.18) if € contains every identity
morphism, € is stable under pullback, and for every pair of composable morphisms p € € and ¢
in €, pogisin € if and only if ¢ € €. One main result of this chapter is the following.

Theorem 1.0.1 (Special case of Theorem 1.5.4). Let C be a category admitting pullbacks and
let €0,E1,...,&x C Ar(C), k > 2, be sets of morphisms containing every identity morphism and
satisfying the following conditions:

(1) &1,E2 C &q; & is stable under composition and &1, &4 are admissible.

(2) For every morphism f in &g, there exist p € &1 and q € €5 such that f =poq.

(3) For every 3 < i<k, & is stable under pullback by &;.
Then the natural map (1.2)

g: 5ZN(G)§e§r,t82,83,‘..,ek — 5271N(e)§%iteg,..‘,sk
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is a categorical equivalence (Definition 1.1.7).
Taking k£ = 2 and £y = Ar(C) we obtain the following.

Corollary 1.0.2. Let C be a category admitting pullbacks. Let E1,E4 C Ar(C) be admissible
subsets. Assume that for every morphism f of C, there exist p € & and q € o such that
f=poq. Then the natural map

g: BEN(O)F", — N(©)
is a categorical equivalence.

In the situation of Corollary 1.0.2, for every oo-category D, the functor
Fun(N(C), D) — Fun(éSN(G)‘é?%Q,D)

is an equivalence of co-categories. We remark that such equivalences can be used to construct
functors in many different contexts. For instance, we can take D to be N(Cat;),” Catn., or the
oo-category of differential graded categories.

In the above discussion, we may replace N(C) by an co-category € (not necessarily the nerve
of an ordinary category), and define the simplicial set J; (?Cgirt ¢,- Moreover, in later application,
we need to encode information such as the Base Change isomorphism, which involves both
pullback and (extraordinary) pushforward. To this end, we will define in §1.3, for every subset
L C{1,...,k}, a variant o ; C&" . of 6;C¢° . by “taking the opposite” in the directions
in L. For L C {3,...,k}, the theorem remains valid modulo slight modifications. We refer the
reader to Theorem 1.5.4 for a precise statement. Let us mention in passing that there exists
a canonical categorical equivalence from the simplicial set 5;‘7 {2}(?%31%2 to the oo-category of
correspondences introduced in [25]; see Example 1.4.29.

Next we turn to applications to categories of schemes.

Corollary 1.0.3. Let P C Ar(8ch’) be the subset of proper morphisms and let J C Ar(Sch’) be
the subset of open immersions. Then the natural map

6§N(Sch’)‘j§:} — N(8ch’)
is a categorical equivalence.

Proof. This follows immediately from Corollary 1.0.2 applied to € = 8ch’, &, =P, €, =J. O

As many important moduli stacks are not quasi-compact, later we will work with Artin stacks
that are not necessarily quasi-compact. Accordingly, we need the following variant of Corollary
1.0.3.

Corollary 1.0.4. Let Sch” be the category of disjoint unions of quasi-compact and quasi-
separated schemes, with morphisms being separated and locally of finite type. Let F = Ar(8ch’)
be the set of morphisms of Sch”. Let P C F be the subset of proper morphisms, and let I C F
be the subset of local isomorphisms [34, Définition 4.4.2]. Then the natural map

65N (Sch”) BT — N(8ch”)
s a categorical equivalence.
Corollary 1.0.4 still holds if one replaces I by the subset E C F' of étale morphisms.
One might be tempted to apply Corollary 1.0.2 by taking £&; = P, €& = I. However, the

assumption of Corollary 1.0.2 does not hold. For example, we may take f to be the structural
morphism of the disjoint union of varieties of unbounded dimensions over a field.

"Here N(Cat;) denotes the simplicial nerve [52, Definition 1.1.5.5] of Caty, the latter regarded as a simplicial
category.
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Proof of Corollary 1.0.4. Put € = Sch”. We introduce the following auxiliary sets of morphisms.
Let Fy C F be the set of separated morphisms of finite type, and let Iy = I N F. Consider the
following commutative diagram

NP | —— a3N(C)5rY,

| |

3N(€)pT ——=N(€),

where the upper arrow is induced by “composing morphisms in P and Iy”, while the left arrow
is induced by “composing morphisms in Iy and I”. We will apply Theorem 1.0.1 to all arrows
in the diagram, except the lower one, to show that they are categorical equivalences. It then
follows that the lower arrow is also a categorical equivalence.

For the upper arrow, we apply Theorem 1.0.1 to k =3, g = Fg, &1 = P, €9 = I, €3 = 1.
Conditions (1) and (3) are obviously satisfied. For Condition (2), note that every morphism f
in F; can be written as a disjoint union [ f; of morphisms f; of 8ch’. It then suffices to apply
Nagata compactification to each f;.

For the left arrow, we apply Theorem 1.0.1 to k=3, Eg = &1 =1, &5 = I, E3 = P. All the
conditions are obviously satisfied.

For the right arrow, note that the map 03N(C)&'"; — d3N(C){*f;, given by “flipping the
squares in (1.1) along the diagonal” is an isomorphism, which is compatible with the maps to
N(€). Thus, it suffices to show that the map d5N(C)§*:, — N(€) is a categorial equivalence. For
this, we apply Corollary 1.0.2 to (k =2, &g = F,) & = I, €5 = Fi. To verify the assumption
of Corollary 1.0.2, let f be a morphism of Sch”. Then f has the form ]_[U X;; — [,V and
is induced by morphisms X;; — Y;, where X;; and Y; are quasi-compact and quasi-separated

schemes. Then f is the composition ]_L-j Xij 4, ]_[” Y; & LI, Y; with p € I and ¢ € Fy. O

The proof of Theorem 1.0.1 consists of two steps. Let us illustrate them in the case of Corollary
1.0.2. The map g can be decomposed as

N(C)Ee, = 3N(C)ey e, — N(€),

where 05N(€)¢, ¢, is the simplicial set whose n-simplices are diagrams (1.1) without the require-
ment that every square is Cartesian, ¢’ is the natural inclusion and ¢” is the map remembering
the diagonal. We prove that both ¢’ and ¢” are categorical equivalences. The fact that ¢” is
a categorical equivalence is an oco-categorical generalization of Deligne’s result [3, Exposé xvii,
Proposition 3.3.2].

This chapter is organized as follows. In §1.1, we collect some basic definitions and facts
in the theory of co-categories [52] for the reader’s convenience. In §1.2, we develop a general
technique for constructing functors to co-categories. In §1.3, we introduce several notions related
to multisimplicial sets used in the statements of our main results. In particular, we define
the restricted multisimplicial nerve of an oo-category with extra data. In §1.4, we prove a
multisimplicial descent theorem, which implies that the map ¢” is a categorical equivalence. In
§1.5, we prove a Cartesian gluing theorem, which implies that the inclusion ¢’ is a categorical
equivalence. A Cartesian gluing formalism for pseudofunctors between 2-categories was developed
in [68]. Our treatment here is quite different and more adapted to the higher categorical context.
In §1.6, we prove some facts about inclusions of simplicial sets used in the previous sections.

1.1. Simplicial sets and oco-categories. In this section, we collect some basic definitions and
facts in the theory of co-categories developed by Joyal in [42] and [43] (who calls them “quasi-
categories”) and Lurie [52].
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For n > 0, we let [n] denote the totally ordered set {0,...,n} and we put [—1] := 0. We let
A denote the category of combinatorial simplices, whose objects are the totally ordered sets [n]
for n > 0 and whose morphisms are given by (non-strictly) order-preserving maps. For n > 0
and 0 < k < n, the face map d}: [n — 1] — [n] is the unique injective order-preserving map such
that k is not in the image; and the degeneracy map s}: [n + 1] — [n] is the unique surjective
order-preserving map such that (s7')~'(k) has two elements.

Definition 1.1.1 (Simplicial set and co-category). We let Set denote the category of sets.

e We define the category of simplicial sets, denoted by Seta, to be the functor category
Fun(A°?, 8et). For a simplicial set S, we denote by S,, = S([n]) its set of n-simplices.

e For n > 0, we denote by A™ = Fun(—, [n]) the simplicial set represented by [n]. We let
OA™ C A™ denote the simplicial subset obtained by removing the interior, namely the
n-simplex defined by id,: [n] — [n]. In particular, OA® = (). For each 0 < k < n, we
define the k-th horn A} € OA™ to be the simplicial subset obtained by removing the face
opposite to the k-th vertex, namely the (n — 1)-simplex defined by df: [n — 1] — [n].

e An co-category (resp. Kan complex) is a simplicial set € such that € — A® has the right
lifting property with respect to all inclusions A} C A™ with 0 < k < n (resp. 0 < k < n).
In other words, a simplicial set C is an co-category (resp. Kan complex) if and only if
every map A} — € with 0 < k < n (resp. 0 < k < n) can be extended to a map A" — C.

Note that a Kan complex is an oo-category. The lifting property in the definition of co-
category was first introduced (under the name of “restricted Kan condition”) by Boardman and
Vogt [10, Definition IV.4.8].

The lifting property defining oo-category (resp. Kan complex) can be adapted to the relative
case. More precisely, a map f: T — S of simplicial sets is called an inner fibration (resp. Kan
fibration) if it has the right lifting property with respect to all inclusions A C A" with0 < k <n
(resp. 0 < k < n). Amap i: A — B of simplicial sets is said to be inner anodyne (resp. anodyne)
if it has the left lifting property with respect to all inner fibrations (resp. Kan fibrations).

Ezample 1.1.2 (Nerve of an ordinary category). Let € be an ordinary category. The nerve N(C) of
C is the simplicial set given by N(C),, = Fun([n], €). It is easy to see that N(€) is an oo-category
and we can identify N(€)g and N(€); with the set of objects Ob(€) and the set of arrows Ar(C),
respectively.

Conversely, given a simplicial set S, one constructs an ordinary category hS, the homotopy
category of S ([52, Definition 1.1.5.14], ignoring the enrichment) such that Ob(hS) = Sy. For an
oo-category C, Homye(z,y) consists of homotopy classes of edges x — y in €y [52, Proposition
1.2.3.9]. By [52, Proposition 1.2.3.1], h is left adjoint to the nerve functor N.

Definition 1.1.3 (Object, morphism, equivalence). Let € be an co-category. Vertices of € are
called objects of € and edges of € are called morphisms of €. A morphism of € is called an
equivalence if it defines an isomorphism in the homotopy category hC.

The category Setp is Cartesian-closed. For objects S and T' of Seta, we let Map(S,T) denote
the internal mapping object defined by

Homget , (K, Map(S,T)) ~ Homget (K x S,T).

If € is an co-category, we write Fun(S, €) instead of Map(S, €). One can show that Fun(S, C) is
an oo-category [52, Proposition 1.2.7.3(1)] (see also [52, Corollary 2.3.2.5]).

8More rigorously, Set is the category of sets in a universe that we fix once and for all.
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Definition 1.1.4 (Functor, natural transformation, natural equivalence). Objects of Fun(S, C)
are called functors S — €, morphisms of Fun(S,C) are called natural transformations, and
equivalences in Fun(S, €) are called natural equivalences.

Remark 1.1.5. Let f,g: S — € be functors and ¢: f — ¢ a natural transformation. Then ¢
is a natural equivalence if and only if for every vertex s of S, the morphism ¢(s): f(s) — g(s)
is an equivalence in €. We refer the reader to [52, Proposition 3.1.2.1] for a generalization (see
[52, Remark 2.4.1.4]).

Remark 1.1.6. Let € be an oco-category and let f,g: * — y be morphisms of €. Then f and g
are homotopic (namely, having the same image in h@) if and only if they are equivalent when
viewed as objects of the co-category defined by the fiber of the map Fun(A?, €) — Fun(dAl, €).
Indeed, the latter condition means that there exist a morphism h: x — y and two 2-simplices of
€ as shown in the diagram

!

.

z Yy
idzl X J{idy
g

r—y.

By definition (resp. [52, Remark 1.2.3.6]), the existence of the 2-simplex in the upper right (resp.
lower left) corner means that f (resp. g) and h are homotopic. This proves the “if” part. For
the “only if” part, it suffices to take h = g and to take the 2-simplex in the lower left corner to
be degenerate.

We now recall the notion of categorical equivalence of simplicial sets, which is essential to our
article. There are several equivalent definitions of categorical equivalence. The one given below
(equivalent to [52, Definition 1.1.5.14] in view of [52, Proposition 2.2.5.8]), due to Joyal [43], will
be used in the proofs of our theorems.

Definition 1.1.7 (Categorical equivalence). A map f: T — S of simplicial sets is a categorical
equivalence if for every oo-category C, the induced functor

hFun(S, €) — hFun(T, €)
is an equivalence of ordinary categories.

If f: T — S is a categorical equivalence, then the induced functor hT' — hS is an equivalence
of ordinary categories. An inner anodyne map is a categorical equivalence [52, Lemma 2.2.5.2].
The category Seta admits the Joyal model structure [52, Theorem 2.2.5.1], for which weak
equivalences are precisely categorical equivalences.

Remark 1.1.8. Let € and D be oco-categories. A functor f: € — D is a categorical equivalence if
and only if there exist a functor g: D — € and natural equivalences between f o g and idp and
between g o f and ide. Indeed, the “only if” direction follows from [52, Proposition 1.2.7.3] and
the other direction is clear.

The following criterion of categorical equivalence will be used in the proofs of our theorems.
Given maps of simplicial sets v,v": Y — X and an inner fibration p: X — S such that pov = pov’,
we say that v and v are homotopic over S if they are equivalent when viewed as objects of the
oo-category defined by the fiber of the inner fibration Map(Z, X) — Map(Z, S) induced by p.

Lemma 1.1.9. A map of simplicial sets f: Y — Z is a categorical equivalence if and only if the
following conditions are satisfied for every co-category D:
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(1) For everyl = 0,1 and every commutative diagram

Y —%—= Fun(A!, D)

10
Z —= Fun(0A!, D)

where p is induced by the inclusion OAL C Al there exists a map u: Z — Fun(A!, D)
satisfying p o u = w such that wo f and v are homotopic over Fun(0A!, D).

(2) For | = 2 and every commutative diagram as above, there exists a map u: Z —
Fun(A!, D) satisfying pou = w.

Proof. By definition, that f is a categorical equivalence means that for every oco-category D, the
functor

F:hFun(Z,D) — hFun(Y, D)

induced by f is an equivalence of categories. We show that the conditions for [ = 0, 1, 2 mean that
F is essentially surjective, full, and faithful, respectively. For [ = 0, this is clear. For [ = 1, this
follows from Remark 1.1.6. For [ = 2, the condition means that for functors gg, g1,92: Z — D,
and natural transformations ¢: go — g1, ¥: g1 — g2, X: go — g2 such that F([¢)]o[¢]) = F([x]),
we have [¢0] o [¢] = [x]. Here [¢], [¢], [x] denote the homotopy classes of ¢, 1, x, respectively.
The condition is clearly satisfied if F' is faithful. Conversely, if F' is faithful, it suffices to take
g1 = g2 and ¥ = id. O

In §1.3, we will introduce the notion of multi-marked simplicial sets, which generalizes the
notion of marked simplicial sets in [52, Definition 3.1.0.1]. Since marked simplicial sets play an
important role in many arguments for oo-categories, we recall its definition.

Definition 1.1.10 (Marked simplicial set). A marked simplicial set is a pair (X, &) where
X is a simplicial set and € C X is a subset containing all degenerate edges. A morphism
f: (X, &) = (X', &) of marked simplicial sets is a map f: X — X’ of simplicial sets satisfying
f(&) C €. We let Set{ denote the category of marked simplicial sets.

The forgetful functor F': Set{ — Seta carrying (X, &) to X admits a right adjoint carrying a
simplicial set S to S* = (S, S;) and a left adjoint carrying S to S* = (S, &), where & is the set
of all degenerate edges. For an oo-category €, we let @ denote the marked simplicial set (€, &),
where € is the set of all edges of € that are equivalences. The category SetX is equipped with
the Cartesian model structure [52, Proposition 3.1.3.7]. The adjoint pair ((—)’, F) is a Quillen
equivalence between the Joyal model structure on Seta and the Cartesian model structure on
Set{ [52, Theorem 3.1.5.1].

The category Setz is Cartesian-closed. For objects X and Y of SetX, we let Maupb(X7 Y)
denote the underlying simplicial set of the internal mapping object YX. We let Mapﬁ(X ,Y) C
Map®(X,Y) denote the largest simplicial subset such that Map®(X,Y)! C YX. If € is an oo-
category, then Mapb(X7 @) is an co-category and Mapﬁ(X, @) is the largest Kan complex [52,
Proposition 1.2.5.3] contained in Map® (X, €%) [52, Remark 3.1.3.1] (see also [52, Lemma 3.1.3.6]),
so that (€)X = Map’ (X, €1,

1.2. Constructing functors via the category of simplices. In this section, we develop a
general technique for constructing functors to co-categories, which is the key to several construc-
tions in this article and its sequels. For a functor F': K — € from a simplicial set K to an
oo-category C, the image F(o) of a simplex o of K is a simplex of €, functorial in o. Here we
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address the problem of constructing F' when, instead of having a canonical choice for F(c), one
has a weakly contractible simplicial set N(o) of candidates for F(o).

We start with some generalities on diagrams of simplicial sets. Let J be a (small) ordinary cat-
egory. We consider the injective model structure on the functor category (Seta )’ := Fun(J, Setn).
We say that a morphism i: N — M in (Seta)’ is anodyne if i(o): N(o) — M(c) is anodyne for
every object o of . We say that a morphism R — R’ in (Seta)’ is an injective fibration if it has
the right lifting property with respect to every anodyne morphism N — M in (Seta)’. We say
that an object R of (Seta)’ is injectively fibrant if the morphism from R to the final object AY
is an injective fibration. The right adjoint of the diagonal functor Seta — (Seta)” is the global
section functor

[: (Seta)” — Seta, T(N), = Homgeg, )9 (AT, N),
where Ag: J — Set is the constant functor of value A9.

Notation 1.2.1. Let ®: N — R be a morphism of (Seta)?. We let ['g(R) C T'(R) denote the
simplicial subset, union of the images of I'(¥): I'(M) — I'(R) for all factorizations

NS ML R

of @ such that i is anodyne.

Remark 1.2.2. As the referee pointed out, I'e (R) can be computed using one single factorization
NS S R

of ®, where ¢ is anodyne and ¥’ is an injective fibration. For every factorization N LmL R
of ® such that ¢ is anodyne, there exists a dotted arrow rendering the diagram

N*i'>j\/[/
il l\p’
M—LsR

commutative. Thus I'g(R) is simply the image of I'(¥’). Since I'(¥’) is a Kan fibration, I'g(R)
is a union of connected components of I'(R). Indeed, the inclusion I's(R) C T'(R) satisfies the
right lifting property with respect to the inclusion At} C A™ for all 0 < j < n.

Remark 1.2.3. By definition, the map I'(®): I'(N) — I'(R) factorizes through I'g(R). The
construction of I's (R) enjoys the following functoriality. For a commutative diagram

N—2.%

S

N/ L R/
in (Seta)?, the map T'(F): T'(R) — ['(R) carries T'(R) into I'g/(R'). Indeed, for every factor-
ization N - M L R of & such that i is anodyne, we have a commutative diagram

N%MLR

S

. ’
N —L =M LR/’

where 7’ is the pushout of 7 by G, hence is anodyne.
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For a functor g: 7 — J, composition with ¢ induces a functor ¢g*: (Seta)’ — (Seta)”. By
a slight abuse of notation, we still denote by ¢g*: T'(R) — TI'(¢*R) the pullback map induced
by the functor g*. Then the pullback map g¢* carries I'g(R) into Iy« (g*R). Indeed, for every

factorization N -5 M — R of ® such that i is anodyne, g*N LAN g M LA g*R is a factorization
of g*® such that g*i is anodyne, and we have the following commutative diagram

ro) ——2 L p(R)
r(g"M) — L r(g*R).

Our construction technique relies on the following property of I'e(R). In a previous draft of
this article, the statement of part (1) in the following lemma was incorrect. We thank the referee
for suggesting the following correction.

Lemma 1.2.4. Let J be a category. Let N, R be objects of (Seta)’ such that N(o) is weakly
contractible for all objects o of J and R is injectively fibrant.

(1) For every morphism ®: N — R, the simplicial set T'g(R) is nonempty and connected,
hence a connected component of T'(R).
(2) For homotopic morphisms ®,®: N — R, we have ['y(R) = Tep(R).

The condition in (2) means that there exists a morphism H: A} x N — R such that H | Ago} X
N=>®and H | A%l} x N = ®'. Note that I'(R) is a Kan complex.

Proof. (1) We apply Remark 1.2.2. Since the morphism M’ — AJ is a trivial fibration, I'(M’)
is a contractible Kan complex. Therefore its image I'q(R) is nonempty and connected, hence a
connected component of T'(R).

(2) We define an object N* by N*(o) = N(o)> [52, Notation 1.2.8.4]. Since the inclusion
Al x N < Al x N is anodyne and R is injectively fibrant, we can find a morphism H’ as shown
in the diagram

Al x N R

Al x N>

rendering the diagram commutative. We denote by h: Aj — R the restriction of H' to the
cone point of N”, corresponding to an edge of I'(R). Then h(0) belongs to I's(R) and h(1)
belongs to I'g/(R). Since I'p(R) and I'g: (R) are connected components of T'(R) by (1), we have
Le(R) =Te (R). 0

Let K be a simplicial set. The category of simplices of K, which we denote by A /g following
[52, Notation 6.1.2.5], plays a key role in our construction technique. Recall that Ak is the
strict fiber product A xset, (Seta)/x. An object of A/ is a pair (n,0), where n > 0 is some
integer and ¢ € Homge, (A", K). A morphism (n,0) — (n/,0’) is a map d: A" — A" such
that o = 0’ od. Note that d is a monomorphism (resp. epimorphism) if and only if the underlying
map [n] — [n'] is injective (resp. surjective). Every epimorphism of A is split. Moreover, A /g
admits pushouts of epimorphisms by epimorphisms. In what follows, we sometimes simply write
o for an object of A if n is insensitive.

The usefulness of Ak is demonstrated by the following lemma.
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Lemma 1.2.5 ([40, Lemma 3.1.3]). The maps o: A™ — K exhibit K as the colimit of the
Junctor A — Seta carrying (n,o) to A".

Proof. We include a proof for completeness. Let X be the colimit. Given m > 0, the set X, is
the colimit of the functor Fy,: A,k — Set carrying (n,0) to (A"),, ~ Homgei, (A™, A™). We
denote by A[/";(] the category of elements of F),,. Objects of F,,, are triples

(n,o,7): A™ L A" L K,

and morphisms (n,o,7) = (n',0’,7’) are commutative diagrams

AT s AT S K

\Ld
’ ’
o

Am T oAV 7T LK,

Note that A[/TZ]

initial object

is a disjoint union of categories indexed by p = o7 € K,,, each admitting an
(m, p,idam): A™ 2 A™ 25 |

The lemma then follows from the fact that the colimit of any functor F': € — Set from a category
C to Set can be identified with the set of connected component of the category of elements of
F. O

Notation 1.2.6. We define a functor Map[K, —]: Setf — (Seta)@/x)” as follows. For a
marked simplicial set M, we define Map[K, M| by

Map[K, M](n, o) = Map*((A")’, M),
for every object (n,0) of A/gx. A morphism d: (n,0) — (n’,0’) in A, goes to the natu-
ral restriction map Res?: Map((A™)?, M) — Map*((A™)’, M). For an co-category C, we set
Map|[K, €] = Map[K, Cf].
The following remark shows how Map[K, —] is related with the problem of constructing func-
tors.

Remark 1.2.7. The map
Map*(K®, M) — T'(Map|K, M])
induced by the restriction maps Mapﬁ(K ° M) — Mapu((A")b, M) is an isomorphism of simplicial
sets. Indeed, the set of m-simplices of Map®(K”, M) can be identified with Homsetz((Am)ﬁ X
K" M), while the set of m-simplices of I'(Map[K, M]) is a limit of the functor A x — Set
carrying (n, o) to Homsetz((Am)’i x (A™)’, M). We are thus reduced to showing that the maps
o: A" — K exhibit (A™)* x K® as the colimit of the functor A, x — Seta carrying (n,o)
to (A™)# x (A™)°. Note that the functor (A™)* x (=)°: Seta — Set} admits a right adjoint
Mapb((Am)ﬁ7 —), hence preserves colimits. The assertion then follows from Lemma 1.2.5.
Note that Map(K”, @) is the largest Kan complex contained in Fun(K, €).

If g: K’ — K is a map, then composition with the functor A g — A induced by g defines
a functor g*: (Seta)(A/x)”" — (Seta)A/x)™  We have ¢g* Map[K, M] = Map[K", M].

Proposition 1.2.8. Let f: Z — T be a fibration in SetX with respect to the Cartesian model
structure, and let K be a simplicial set. Then the morphism Map[K, f]: Map[K, Z] — Map[K, T
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is an injective fibration in (SetA)(A/K)UP. In other words, for every commutative square in
(Seta ) A/ of the form

N —2> Map[K, Z]

7
T s

M T> Map[K, T]

such that N — M is anodyne, there exists a dotted arrow as indicated, rendering the diagram
commutative.

The proof of this proposition will be given after Remark 1.2.11.

Corollary 1.2.9. Let f: Z — T be a fibration in Setz with respect to the Cartesian model
structure, K a simplicial set, a: K° — T a map, and N € (SetA)(A/K)OP such that N(o) is weakly
contractible for all 0 € Aji. We let Map|K, fla denote the fiber of Map[K, f]: Map[K, Z] —
Map|K, T)] at the section A% — Map[K,T] corresponding to a.
(1) For every morphism ®: N — Map[K, fl,, the simplicial set T'e(Map[K, fl,) is a
(nonempty) connected component of T'(Map[K, f]a)-
(2) For homotopic ®,®": N — Map[K, fl., we have

F@(Map[K, f]a) =Te (Map[K, f]a)'

The condition in (2) means that there exists a morphism H: AL x N — Map[K, f], in
(Seta)@/®)” such that H | Al x N=a, H| Al x N =@

Proof. By Proposition 1.2.8, if € is an co-category, then Map[K, €] is an injectively fibrant object
of (8eta)(A/x)” since C is a fibrant object of Set [52, Proposition 3.1.4.1]. Then the corollary
follows from Lemma 1.2.4 applied to R = Map[K, f],. O

Remark 1.2.10. The functor Map[K, —] admits a left adjoint F': (Seta)A/x)” — Set! carrying
R to the coend of the diagram

(A/g)P x Ay = 8etk, ((n,0),(m, 7)) = R(n,0)* x (A™).

The functor F' can be described more explicitly as follows. Note that for functors G: C°P — Set,
H: C — Set, where C is a category, the coend of the diagram

CP x € — Set, (A, B) — G(A) x H(B)

can be identified with the colimit of the functor D°? — Set carrying (A, h) to G(A), where D
is the category of elements of H. Thus if we write F'R = (X, €), then X, is the colimit of the
functor (A[/n;{])(’p — 8et carrying (n,o,7) to R(n,o),, where A[/";{] is the category defined in
the proof of Lemma 1.2.5. Therefore, X, is the disjoint union of R(m, o), for all m-simplices
o: A™ — K. Moreover, & C X is the union of R(1,0); for all degenerate edges o: A — K.

It follows from the above description that F' preserves monomorphisms. Thus Proposition
1.2.8 shows that the pair (F, Map[K, —]) is a Quillen adjunction between Setz endowed with the

Cartesian model structure and (Seta)(A/%)” endowed with the injective model structure.

Remark 1.2.11. If we replace A, g by the full subcategory A;‘}i( spanned by nondegenerate

simplices, then Proposition 1.2.8 still holds and the proof becomes simpler. However, Ar/‘}j( is
only functorial with respect to monomorphisms of simplicial sets, which is insufficient for our
applications.
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Proof of Proposition 1.2.8. For n > 0, we let J,, denote the full subcategory of A i spanned by
(m,o) for m < n. We construct Q| J% by induction on n. It suffices to construct, for every
o: A" — K, a map Q(n,o) as the dotted arrow rendering the following diagram commutative

N, o) —D__ Maph((Am), Z)
Q(?’L,O’)» 7 ,
Map? ((A™)",f)

M(”a 0) T Mapﬂ((An)va),

such that for every monomorphism d: (n — 1,p) — (n,0) and every epimorphism s: (n,o) —
(n —1,7), the following two diagrams commute

Q(n,o)

M(n, o) Map?((A™)?, Z)

M(d)l \LResd

M(n — 1, p) —=2 Mapt((A™1Y, Z),

Mn—1,7) —7ED  \apb((Am-1), 2)

M(s)l lResS

M(n, o) ——T . Maph((A"), 2).

By the induction hypothesis, the maps Q(n — 1,p) amalgamate into a map
M(n,0) — Map*((dA™)*,Z), and the maps Q(n — 1,7) amalgamate into a map
M(n,o)de — Map*((A™)’, Z), where M(n,o)%& C M(n,o) is the union of the images of
M(s): M(n—1,7) — M(n, o). These maps amalgamate with ®(n, o): N(n, ) — Map®((A"), Z)
into a map Q': A — Z, where

A = (N(n,0) UM(n, o)) x (A™)° 11 M(n,o)f x (DA™,
(N(n,0)UM(n,o)dee)t x (DAR)>

fitting into the commutative square

A &

=7
J Qn,o) J{

4 ny\b
M(n,0)* x (A™) e T.
It suffices to show that 7 is a trivial cofibration in SetX with respect to the Cartesian model
structure, so that there exists a dotted arrow rendering the above diagram commutative.
Let us first remark that for every epimorphism s: (n’,0’) = (n”,0"”) of Ak, the left square
of the commutative diagram

N(n”, 7_l/) N(s) N(n/, 7_/ N(d) j\[‘(n/l7 7_//)
(

)
l
n',7)

is a pullback by Lemma 1.2.12 below. Here d is a section of s.

M(s)

M(n”, ) T e

!/ M(’I’LH,T”),
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Next we prove that the map N(n, )% — M(n, o) is anodyne, where N(n, )% C N(n, )
is the union of the images of N(s). More generally, we claim that, for pairwise distinct epi-
morphisms s1,..., 8y, where s;: (n,0) — (n — 1,7;), the inclusion N(7q) U --- U N(1,) —
M(m)U---UM(7p,) is anodyne. Here N(7;) € N(n, o) denotes the image of the split monomor-
phism N(s;) and similarly for M(7;). We proceed by induction on m (simultaneously for all n).
The case m = 0 is trivial and we assume m > 1. For 1 < j < m — 1, form the pushout

(n,0) ——> (n—1,7;)

Sy

(n—1,7p) ——=(n — 2,77).

By Lemma 1.2.13 below, we have N(7;) N N(7,) = N(7}), where N(7/) denotes the image of

N(s%5m). The same holds for M. It follows that we have the following pushout square

fo——= 11
fo——f3
in the category (Seta ), where
for N(r{) U+ UN(7y, 1) = M(7) U=+ UM(7,, ),
fi: N(Tm) = M(1m),
fo: N(T) UN(Tm 1) — M(Tl) UM(Tm 1)
f3: N(Tl) - UN(rn) = M(m) U - UM(Ti)

are natural arrows. By assumption, f; is anodyne. By induction hypothesis, fo and fo are
anodyne. Since N(7,) N M(7}) = N(7}) by the remark of the preceding paragraph, Lemma
1.2.14 implies that f3 is anodyne.

By the remark again, we have N(n,o) N M(n,0)%® = N(n,o)%. Thus the inclusion
N(n,o) € N(n,o) UM(n,o)%® is a pushout of N(n,s) C M(n,s)4°®, hence is anodyne.
By assumption, the inclusion N(n,c) C M(n, o) is anodyne. By the two-out-of-three property
for weak equivalences, it follows that the inclusion N(n, o) U M(n, o) C M(n, o) is anodyne,
and consequently the inclusion (N(n, o) UM(n, 0)4°8)* C M(n, 0)* is a trivial cofibration in Set{
(see Remark 1.3.11 below). The lemma then follows from the fact that trivial cofibrations in
Set{ are stable under smash products with cofibrations [52, Corollary 3.1.4.3]. O

We say that a square in a category C is an absolute pullback (resp. absolute pushout) if every
functor F': € — D carries the square to a pullback (resp. pushout) square in D.

Lemma 1.2.12. Let C be a category. Given a commutative diagram in C
I PR
X/ # Y/ #_ X/

in which both horizontal compositions are identities and g is a monomorphism, then the square
on the left is a pullback square. In particular, if g is a split monomorphism, then the square on
the left is an absolute pullback.
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Proof. The second assertion follows immediately from the first one. To show the first assertion,
let a: W — X’ and b: W — Y be morphisms satisfying s'a = gb. If ¢: W — X is a morphism
satisfying fc = a and sc = b, then we have ¢ = rsc = rb. Conversely, we have f(rb) = r'gb =
r's'a = a and s(rb) = b. The last equality follows from gsrb = s'frb = s'a = gb, since ¢ is a
monomorphism. O

Lemma 1.2.13. In A g, pushouts of epimorphisms by epimorphisms are absolute pushouts.

In the case of A ~ A /a0 the lemma is [44, Theorem 1.2.1] (see also [24, §I1.3.2]). The proof
in the general case is similar. We include a proof for completeness.

Proof. Factorizing epimorphisms into compositions of s?’s (for the notation see the beginning of
§1.1), we are reduced to the case of the pushout of s by s%, where ¢ < j. This case follows from
Lemma 1.2.12 applied to the diagram

n+1 n
i ST

(n,7) ———=(n+1,0) ——(n,7)

n—1 n
Sj—1 Sj
dn n—1

(n—1,7") — (n,o’) > (n—1,7")

for i < j, and to the diagram

for i = j. O
Lemma 1.2.14. Consider a pushout square

fo——h

fo—=f3

in (Seta)M, where f;: Yi — X;. Assume that fo, fi, fo are anodyne (resp. right anodyne) and
the map Xq ]—[YO Y1 — X; induced by u is a monomorphism. Then f3 is anodyne (resp. right
anodyne).

Proof. The square corresponds to a cube in Seta, which can be decomposed into a commutative
diagram

Yo ————=1; Y
ST
[ [
Xo t Zo o t X4
\ \
[ [
Y ]
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where the top and bottom squares on the left are pushout squares, and the front and back
squares are pushout squares. For i = 0,2, the map g; is a pushout of f;, hence is anodyne
(resp. right anodyne). Since f; is anodyne (resp. right anodyne) and ap is a monomorphism
by assumption, ag is anodyne by the two-out-of-three property of weak equivalences (resp. right
anodyne by [52, Proposition 4.1.1.3]). Thus the pushout as of ag is anodyne (resp. right anodyne).
Therefore, f3 = asgs is anodyne (resp. right anodyne). O

We now give the form of the construction technique as used in Sections 1.4 and 1.5.

Proposition 1.2.15. Let K be a simplicial set, C an co-category, and i: A — B a monomor-
phism of simplicial sets. Denote by f: Fun(B,C) — Fun(A4,C) the map induced by i. Let N
be an object of (Seta) /%) such that N(o) is weakly contractible for all o € Ak, and let
®: N — Map|[K,Fun(B, €)] be a morphism such that Map[K, f] o ®: N — Map[K, Fun(A4, C)]
factorizes through A?A/K)OP to give a functor a: K — Fun(A,C). Then there exists b: K —
Fun(B, @) such that bop = a and for every map g: K' — K and every global section
v € T(¢g*N)g, the maps bo g and ¢g*® ov: K/ — Fun(B,C) are homotopic over Fun(A4,C).
Here g*®: g*N — g* Map[K, Fun(B, C)] = Map[K’, Fun(B, C)].

In the statement we have implicitly used isomorphisms provided by Remarkl.2.7 such as
Map? (K, Fun(A4, €)) ~ I'(Map[K, Fun(A4, €)]).

Proof. Since Fun(—,C)! = (Gh)(*)b, the map f%: Fun(B,C)* — Fun(4,€)" is a fibration in
Setz for the Cartesian model structure by Lemma 1.2.16 below. Thus by Proposition 1.2.8,
Map[K, f9] is an injective fibration. We let Map[K, f%], denote the fiber of Map[K, ff] at a,
which is injectively fibrant. By Lemma 1.2.4 (1), T's(Map[K, f%],) is a (nonempty) connected
component of I'(Map[K, f%],). Note that I'(Map[K, f],) is the fiber of T'(Map[K, Fun(B, C)]) —
['(Map[K, Fun(A4, C)]) at a. Any vertex of I's(Map[K, f%],) then provides the desired b. Indeed,
for given g and v, both bo g and g*® o v are given by vertices of the connected Kan complex
[ y-o(Map[K', f%]4=a), which are necessarily equivalent. O

Lemma 1.2.16. Let X — Y be a fibration and i: A — B be a cofibration in Set'g with respect
to the Cartesian model structure. Then the induced map

XB 5 XA %xyaYE
is a fibration in SetX with respect to the Cartesian model structure.

Proof. This follows immediately from the fact that trivial cofibrations in Setz are stable under
smash product with cofibrations [52, Corollary 3.1.4.3]. O

1.3. Restricted multisimplicial nerves. In this section, we introduce several notions related
to multisimplicial sets. The restricted multisimplicial nerve (Definition 1.3.14) of a multi-tiled
simplicial set (Definition 1.3.12) will play an essential role in the statements of our theorems.

Definition 1.3.1 (Multisimplicial set). Let I be a set. We define the category of I-simplicial
sets to be Setya = Fun((AT)°P Set), where Al := Fun(I, A). For an integer k > 0, we define
the category of k-simplicial sets to be Setya = Set;a, where I = {1,...,k}. We identify Setia
with SetA.

We denote by A™l*€I the I-simplicial set represented by the object ([n;])ic; of Al. For
an [-simplicial set S, we denote by S, ;c; the value of S at the object ([n;])icr of Al An
(ni)icr-simplex of an I-simplicial set S is an element of S, ;c;. By the Yoneda lemma, there is
a canonical bijection between the set S, ;c; and the set of maps from A€l 6 G
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For J C I, composition with the partial opposite functor A’ — Al sending
(cosPjryey Pyyoo) to (oo, Py, PYP,00) (taking op for P; when j € J) defines a
functor op}: Setya — Setra. We put AZ"“EI = op, A™I€1 - Although Ag’ilie] is isomorphic to
A™IED it will be useful in specifying the variance of many constructions. When J = 0, opé is
the identity functor so that Agmél = Amili€l

Remark 1.3.2. The category Setya is Cartesian-closed. In fact, for two I-simplicial
sets X and Y, the internal mapping object Map(Y,X) is an [-simplicial set such
that Homget, , (Z, Map(Y, X)) =~ Homge,(Z x Y, X) for every Z € Setya. We have
oply Map(Y, X) =~ Map(op};Y, op/; X).

Definition 1.3.3. Let I, J be two sets.

(1) Let f: J — I be a map of sets. Composition with f defines a functor Af: AT — A/,
Composition with (A/)°? induces a functor (Af)*: Setja — Setra, which has a right
adjoint (A7), : Set;a — Setya. We will now look at two special cases.

(2) Let f: J — I be an injective map. The functor Af has a right adjoint cr: AT - AT
given by c¢(F); = Fj if f(j) = i and ¢f(F); = [0] if 4 is not in the image of f. The
functor (A7), can be identified with the functor ¢/ induced by composition with (cf)°P.
If J={1,...,k'}, we write 65‘(1)~~f(k’) for €.

(3) Consider the map f: I — {1}. Then &; := Af: A — Al is the diagonal functor, and
composition with (67)°P induces the diagonal functor 67 = (Af)*: Setja — Seta. We
define

A[TLi]ie] — 6;Am\i61 _ HAm
i€l
We define the multisimplicial nerve functor to be the right adjoint 6£: Seta — Setra of
§%. An (n;);er-simplex of 61X is given by a map Alrilier — X
(4) For J C I, we define the twisted diagonal functor 67 ; as 07 o oph: Setra — Seta. We

define
A!}ni]iel — (5;JAni|i€I — 5}<A7}1‘161 _ ( H Am) > H(Anj)op
iel—J jeJd
When J = 0, we have 8} ) = 67 and Ay"1e’ = Alnilier,
When I = {1,...,k}, we write k instead of I in the previous notation. For example, in (2)

we have (efK)n = Ko,...n,...0, where n is at the j-th position and all other indices are 0. In (3)
we have 0} : Setya — Seta defined by (6;X), = Xp, -

Remark 1.3.4. For any map f: J — I, we have Af o §; = 67, so that (Af), 06! ~ §7. In
particular, for f injective, we have ¢/ o § ~ §7. For a € I, we have €l o §f ~ idset, -

Remark 1.3.5. For f: J — I injective, we have A o cf = idav, so that el o (AS) = idset A -
The counit transformation (A/)* o ¢/ — idge,, is a monomorphism. Indeed, for each object
P of A the unit morphism P — (c; o Af)(P) admits a section. Applying the functor &, we
obtain a monomorphism &% o e/ — 47.

Remark 1.3.6. For every map f: J — I, the adjunction formula for presheaves provides a canon-
ical isomorphism

Map(Y, (Af)*X) = (Af)* Map((Af)*Y,X)
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for every I-simplicial set X and every J-simplicial set Y. This map is the composite map

Map(Y, (A7).X) B0 (Af). Map((AF)*Y, (A7) (AT).X)
— (A7) Map((A7)*Y, X),

where the second map is induced by the counit map (A/)*(Af),. X — X.
Specializing to the case of §; and applying the functor €, where o € I, we get an isomorphism

el Map(X,618) ~ Map(6; X, S)

for every I-simplicial set X and every simplicial set .S, which is the composite map

5
el Map(X,618) =5 Map(0; X, 83625) — Map(d; X, S).
Definition 1.3.7 (Exterior product). Let I = [],c;; be a partition. We define a functor

&jejt H Set]jA — Setra
jedJ
by the formula K¢ ;57 = HjeJ(ALJ')*Sj, where ¢;: I; < I is the inclusion. For J = {1,...,m},
I ={1,...,k;}, we define

XX SetklA Xoee xSetkmA — Setrpa.

m
X X ST
17 ke

1 .. m) —
by (S X XS n%,...,n}cl,...,n{"’,“.,ngtn - "%7“""11“

We have the isomorphisms ®ie A" ~ A" €l and 67 Rje ;s §7 ~ [, 67,57

Remark 1.3.8. For a map f:J — I, we have (Af)*Amli€l ~ RieAlMlics—1@) | so that an
(n;);es-simplex of (Af), X is given by a map &ielA["f]Jef‘l(“ — X.

We next turn to restricted variants of the multisimplicial nerve functor . We start with
restrictions on edges.

Definition 1.3.9 (Multi-marked simplicial set). An I-marked simplicial set (resp. I-marked
oo-category) is the data (X,€ = {&€;}icr), where X is a simplicial set (resp. an oo-category)
and, for all 7 € I, €; is a set of edges of X which contains every degenerate edge. The data € is
sometimes called an I-marking on X. A morphism f: (X, {€;}icr) = (X', {&}}icr) of I-marked
simplicial sets is a map f: X — X’ having the property that f(&;) C &] for all i € I. We denote
the category of I-marked simplicial sets by Setﬁ'. It is the strict fiber product of I copies of
Setz over Seta.

For a simplicial set X and a subset J C I, we define an I-marked simplicial set X 8 = (X,8)
by (X,€;) = X* for j € J and (X, &) = X fori € I —J. We write X! = X1 and X*' = X%.
The functor Seta — Seth" carrying X to xt (resp. Xbl) is a right (resp. left) adjoint of the
forgetful functor SetIA+ — Seta.

Consider the functor 67, : Set;a — SetIAJr sending S to (675, {€;}icr), where &; is the set of
edges of €/ S C §75. This functor admits a right adjoint 6F: Set\” — Set;a. Since 6}, Aml1€l =
HieI(A"f’)ﬂL‘}, the functor §I* carries (X, {&;}icr) to the I-simplicial subset of 61X whose

(n)ie1-simplices are maps Al*ilier — X such that for every j € I and every map A — eJI»A”i“EI,
the composition

A — fAmliEl o Alnidier 5 x
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is in €;. We have 6/(X) = 6+ (X*). When I = {1,...,k}, we use the notation Set’", 67, and
5f+_9

Definition 1.3.10 (Restricted multisimplicial nerve). We define the restricted I-simplicial nerve
of an I-marked simplicial set (X, & = {€;}icr) to be the I-simplicial set

Xe = Xigier = 5i+(X, {€}ier)-

In particular, for any marked simplicial set (X, &), the simplicial set X¢ is the simplicial subset
of X spanned by the edges in €.

Remark 1.3.11. The functor &7, : Seta — Set} carries S to S*. The functor 6!T: Set} —
Seta carries (X, &) to the simplicial subset of X consisting of all simplices whose edges are all
marked edges. In other words, X¢ = 617 (X, &) is the largest simplicial subset S C X such
that S* C (X,&). We have 61T ~ Map*((A°)’,—). For objects X and Y of Setf, we have
Map(X,Y) = o1+ (yX).

The pair (67,,0.T) is a Quillen adjunction for the Kan model structure on Seta and the
Cartesian model structure on Setz. This is a special case of Remark 1.2.10 but we can also
check this easily as follows. Clearly 07, preserves cofibrations. To see that it also preserves
trivial cofibrations, note that for any anodyne map of simplicial sets T — S and any oo-category
@, the induced map Map?(S?, @) — Map(T*, €) is a trivial Kan fibration.

Next we consider restrictions on squares. By a square of a simplicial set X, we mean a map

A x A — X. The transpose of a square is obtained by swapping the two A'’s. Composition
with the maps id x dj,id x di: Al ~ At x A® — Al x A! induce maps Hom(A! x Al, X) — X3
and composition with the map id x sJ: Al x Al — Al x A? ~ A! induces a map X; —
Hom(A! x Al X).
Definition 1.3.12 (Multi-tiled simplicial set). An I-tiled simplicial set (resp. I-tiled co-category)
is the data (X, € = {&; }ier, Q = {Qij }i jer.ixj), where (X, €) is an I-marked simplicial set (resp.
oo-category) and, for all 4,5 € I, i # j, Q;; is a set of squares of X such that Q,; and Qj; are
obtained from each other by transposition of squares, and id x dj, id x d} induce maps Qij — &4,
and id x s} induces & — Q;;. A morphism f: (X, €&,Q) — (X', &,Q’) of I-tiled simplicial sets
is a map f: X — X' having the property that f(&;) C f(€}) and f(Q;;) C Qj; for all i,5. We
denote the category of I-tiled simplicial sets by SetIAD. The data T = (&, Q) is sometimes called
an I-tiling on X. For brevity, we adopt the conventions T; = &; and T;; = Q;;.

Remark 1.3.13. Note that &; is the image of Q;; under either of the maps Q;; — &; given by
id x dj and id x di. Moreover, f(Q;;) € Qj; implies f(&;) C & and f(&;) C &).

Consider the functor d75: Setra — SetIAD carrying S to (07,5, Q), where Q;; is the image of
the injection

(e/;9)11 = Homsger,, (AV',€],9)

) €44

5

— Homger, (A" x A, 65€/,5) € Homger, (A' x A, 675).
This functor admits a right adjoint 615 SetIAD — Setya carrying (X, €, Q) to the I-simplicial sub-
set of 11 (X, &) C 61X whose (n;)ses-simplices are maps Al*lier — X satisfying the additional
condition that for every pair of elements j, k € I, j # k, and every map A' KAl — 6§kA7”|iEI,
the composition

Al 5 Al 5;€§kAni|i€I s Alnilier _y x

isin Qj;. When I = {1,...,k}, we use the notation Setgm, el ok,

9n particular, SetQA+ in our notation is SetzJr in [53, Definition 4.7.4.2].
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Definition 1.3.14 (Restricted multisimplicial nerve). We define the restricted I-simplicial nerve
of an I-tiled simplicial set (X, T) to be the I-simplicial set 65 (X, 7).

Notation 1.3.15. The underlying functor U: Seth” — Set’" carrying (X, €,Q) to (X, &) admits
a left adjoint V: Se‘cIAJr — SetIAD and a right adjoint W: SetIA+ — SetIAD, which can be described
as follows.
e We have V(X, &) = (X, €,Q), where Q;; is the union of the image of &; under —o (id x sJ)
and the image of &; under — o (s§ x id).
e For sets of edges &; and &, of X, we denote by 1% x € the set of squares f: A'xAl = X

£(0,0) — £(0,1)

L

f(1,0) — f(1,1)
such that the vertical edges f o (id x d.,), a = 0,1 belong to &; and the horizontal edges
fo(dl xid), a =0,1 belong to . We have W(X, &) = (X, &, Q), where Q;; = &; xx &;.
We have 6%, ~ Uod3 and I+ ~ 6/HoW.
Definition 1.3.16 (Cartesian multisimplicial nerve). If € is an oo-category and &1, €5 are sets
of edges of €, we denote by &; *F'* €5 the subset of & e &2 consisting of Cartesian squares.
For an I-marked oo-category (G, &), we denote by (€, E) the I-tiled co-category such that
Et = & for i € T and €' = & +F" & for 4,5 € I and i # j. We define the Cartesian
I-simplicial nerve of an I-marked oo-category (€, &) to be

e(éart — 5£D(e’ Scart)'

For reference in later sections, we define a few properties of sets of edges and squares. As
in the definition of marked simplicial sets, we are mainly interested in those sets of edges that
contain all degenerate edges. However, many sets of squares of interest, when regarded as sets of
edges in suitable simplicial sets, do not contain all degenerate edges. For this reason, we allow
sets of edges not containing all degenerate edges in the definitions below.

Definition 1.3.17. Let X be a simplicial set, and let € be a set of edges of X. We say that € is

(1) composable if every map A? — X whose restrictions to AL} and to A{H2} are in €
extends to a 2-simplex A% — X whose restriction to A{%2} is in &.

(2) stable under composition for every 2-simplex o of X such that ocod%,00d3 € &, we have
ocod}€é.

If € contains every degenerate edge, then (1) above is equivalent to every one of the following
conditions

e (X, &) has the extension property with respect to the inclusion (A?)# C (A2)%;
e X has the extension property with respect to the inclusion A? C AZ;

and (2) above is equivalent to every one of the following conditions
e (X, &) has the extension property with respect to the inclusion
(ADF T (4% < (a)
(A)
e X¢ — X has the right lifting property with respect to the inclusion A? C A?;
e X¢ — X is an inner fibration.
If X has the extension property with respect to A2 C A2, then (2) implies (1).
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Definition 1.3.18. Let C be an co-category and let €, F be two sets of edges of €. We say that
& is
(1) stable under homotopy if for e € € and f € C; that have the same image in hC, we have
feé
(2) stable under equivalence if for e € & and f € C; that are equivalent as objects of
Fun(Al, C), we have f € &;
(3) stable under pullback by F if for every Cartesian square in € of the form

Y y
with e € € and f € F, we have ¢’ € &;
(4) stable under pullback (see [52, Notation 6.1.3.4]) if it is stable under pullback by Cy;

(5) admissible if € contains every degenerate edge of €, is stable under pullback, and for
every 2-simplex of € of the form

N

Zz———>

-

f

—_—

with p € €, we have ¢ € € if and only if r € €.

In the above definition, (5) implies (4); (4) implies (3); (2) implies (1). Moreover, if F
contains every edge of C that is an equivalence (resp. degenerate), then (3) implies (2) (resp.
(1)). If € satisfies (3) with € and F each containing all degenerate edges of €, then & contains
all equivalences of €. The last condition in (5) is equivalent to saying that Xe¢ — X is a right
fibration [52, Definition 2.0.0.3].

Remark 1.3.19. If C admits pullbacks, then € is admissible if and only if it contains every
degenerate edge of € and is stable under composition, pullback, and taking diagonal in €. The
“only if” part is clear. For the “if” part, note that in the 2-simplex (1.3), ¢ is a composition of

Z—= 2 XY =Y,
where the first morphism is a pullback of the diagonal y — y X, y of p and the second morphism
is a pullback of r by p. Indeed, we have a diagram with pullback squares

q
>

l Y
EXgYy — =Y Xgy —>

Y
q p
z T.

In an oco-category C, a set of edges € is composable if and only if its image in hC is stable
under composition. Thus if € is composable and stable under homotopy, then € is stable under
composition. The converse holds if € contains every degenerate edge. In the next section, we
will need the following extension property of composable sets of edges.

Lemma 1.3.20. Let I be a set. Let (B, ) be an I-marked simplicial set and (C, €) an I-marked
oo-category. Let A C B be a categorical equivalence such that for each i € I, F; is contained in

Y
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the smallest set of edges of B containing G; = A1 NF; and stable under composition. Assume &;
composable for alli € I and F;NF; C Ay for alli,j € I, i # j. Then (C,&) has the extension
property with respect to (A,9) C (B, F).

Proof. Let f: (A,G) — (C, &) be a map of I-marked simplicial sets. Choose an extension g: B —
C of f. For each i € I, let &, denote the set of edges of C that are homotopic to some edge of
&;. Then €&} is stable under composition, and hence so is its inverse image under g. Thus g
induces (B,¥) — (C,&’). Let D C B be the union of A and the edges in F. We construct a
map ho: (D,F) = (€, €) extending f and a natural equivalence g | D — hg extending idy, by
choosing for each edge e in F; but not in A, a homotopy from g(e) to an edge ho(e) in &;. By
[52, Lemma 2.4.6.3], ho extends to a map (B,F) — (€, &), as desired. O

Definition 1.3.21. For a simplicial set X, the map
Hom(A' x A', X) — Hom(A', Map(A', X))

carrying f to a — (b — f(a,b)) (resp. a — (b— f(b,a))) is an isomorphism.
(1) We say that a set of squares Q of X is stable under composition in the first (resp. second)
direction if the resulting set of edges of Map(Al, X) is stable under composition.
Now let Q and Q' be sets of squares of an co-category C.

(2) We say that Qs stable under equivalence if Q, when viewed as a set of edges of Map(A?, €)
via the above isomorphism, is stable under equivalence.

(3) We say that Q is stable under pullback by Q' in the first (resp. second) direction, if Q is
stable under pullback by Q' in Map(A?, €), where Q and Q" are viewed as sets of edges
via the above isomorphism.

(4) We say that Q is stable under pullback in the first (resp. second) direction if (3) holds for
Q" = Fun(A! x Al, ), the set of all squares of €.

By [52, Corollary 5.1.2.3], condition (3) means that for any cube in € of the form

(1.4) y'(0) y(0)

such that the front and back squares are pullback, such that the right square is in Q, and such
that the bottom square is in Q’, the left square is in Q. Here we interpret the horizontal and
vertical arrows as in the first (resp. second) direction and the oblique arrows as in the other
direction.

Lemma 1.3.22. Let C be an co-category. Let Q% be the set of all pullback squares of €. Then
the image of Q" under each of the two isomorphisms in Definition 1.5.21 is an admissible
set of edges. In particular, Q% is stable under equivalence, stable under composition in both
directions, and stable under pullback in both directions.
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Proof. The last condition in the definition of admissibility is [52, Lemma 4.4.2.1]. It remains to
show the stability under pullback. Consider a cube of the form (1.4) in which the front, back,
and right squares are pullback. By the “if” part of (1), the square with vertices 3'(0), y(1), 2’ (0),
x(1) is a pullback square. We conclude by the “only if” part of (1). O

Remark 1.3.23. Let C be an oco-category and let €1, €5, €3 be sets of edges of €. Lemma 1.3.22
has the following consequences.

(1) If &; is stable under composition, then €1 x& £, is stable under composition in the first

direction.

(2) If &5 and €3 are stable under pullback by €1, then & xe €3 and &, *‘éart &3 are stable
under pullback by &; *F* €3 in the first direction.

(3) If &5 is stable under pullback by €2, and &, is stable under pullback by €1, then 5+ €5
is stable under pullback by &1 *¢ &3 (and, in particular, by &1*F'€3) in the first direction.

Remark 1.3.24. Let € be an ordinary category, and let €1, ..., & be sets of morphisms of € stable
under composition and containing identity morphisms. Then N(€)e, e, and N(€)§" . can
be interpreted as the k-fold nerves in the sense of Fiore and Paoli [21, Definition 2.14] of suitable
k-fold categories. More generally, if Q;; are sets of squares stable under composition in both
directions such that (N(@), &, Q) is a k-tiled oo-category, then §¥5(N(@), &, Q) is the k-fold nerve

of a suitable k-fold category.

1.4. Multisimplicial descent. In this section, we study the map of simplicial sets obtained by
composing two directions in a multisimplicial nerve. The main result is Theorem 1.4.14, which
is a general criterion for the map to be a categorical equivalence. We then give more specific
sufficient conditions in two important special cases: Theorem 1.4.16 and Theorem 1.4.20. The
latter can be regarded as a generalization of Deligne’s result [3, Exposé xvii, Proposition 3.3.2]
(see Remark 1.4.24).

In Deligne’s theory, a fundamental role is played by the category of compactifications of a
morphism f, whose objects are factorizations of f as p o g, where p, g belong respectively to the
two classes of morphisms in question. To properly formulate compactifications of simplices of
higher dimensions, we introduce a bit of notation.

We identify partially ordered sets with ordinary categories in which there is at most one arrow
between each pair of objects, by the convention p < ¢ if and only if there exists an arrow p — q.
For every element p € P, we identify the overcategory Py, (resp. undercategory P,,) with the full
partially ordered subset of P consisting of elements < p (resp. > p). For p,p’ € P, we identify
P,/ with the full partially ordered subset of P consisting of elements both > p and < p’, which
is empty unless p < p'. For a subset Q of P, we write Q,, = QN P,,, etc.

Notation 1.4.1. Let n > 0 be an integer. We consider the bisimplicial set A™" and the partially
ordered set [n] x [n], related by the natural isomorphisms of simplicial sets 05 A™™ ~ A™ x A" ~
N([n] x [n]). We enumerate their vertices by coordinates (i,j) for 0 < i,5 < n. We define
Cpt™ C A™™ to be the bisimplicial subset obtained by the vertices (¢, 7) with 0 < i < j < n. We
define Cpt" C [n] X [n] to be the full partially ordered subset spanned by (i,7) with 0 < i < j < n.
We have

§;Cpt™ ~ 0" C Cpt" := N(Cpt"),

where we have put 0" := (J,_, Op and O} := N(Cpt{{ &)/ /(k,n)) 15 the nerve of the full partially
ordered subset of [n] x [n] spanned by (i,7) with 0 <i <k < j < n.

Below is the Hasse diagram of Cpt®, rotated so that the initial object is shown in the upper-
left corner. The dashed box represents [J3, while bullets represent elements in the image of the
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diagonal embedding [3] — Cpt®.

—

(1.5)

Moo |

Note that the first coordinate is represented vertically and the second one is represented hori-
zontally.
We now review compactifications in ordinary categories.

Definition 1.4.2. Let C be an ordinary category and let €1, €5 be two sets of morphisms of €
containing all identity morphisms. Let 7: [n] — € be a functor, corresponding to a sequence of
morphisms

Co—>ClL—> * —>Cp.

We define a compactification of T to be a functor o: Cpt"” — € satisfying the following condi-
tions:

(1) The functor o carries “vertical” morphisms (¢, j) — (¢, 7) of Cpt" into €; and “horizon-
tal” morphisms (¢, ) — (i,5’) into .

(2) The composition [n] — Cpt™ 2 € is 7. Here [n] — Cpt” is the diagonal functor carrying
i to (i,1).

Assume that &, is stable under composition for @« = 1 or a = 2. The compactifications of 7 can
be organized into a category Kpt®(7) as follows. Given two compactifications o,¢’: Cpt" — €
of 7, a morphism in Kpt*(7) is a natural transformation v: ¢ — ¢’ satisfying the following
conditions:

(1) For every (i,7) € Cpt"™, the morphism ~(4,7): o(i,7) = o'(i,7) is in &,.
(2) The restriction of 7 to [n] via the diagonal functor is id,.

For a = 1 (and n < 3), Kpt'(7) is the category of compactifications considered by Deligne
[3, Exposé xvii, Définition 3.2.5].

In the language of 2-marked simplicial sets, we can reformulate the two conditions (1)
in Definition 1.4.2 as follows. Condition (1) in the definition of compactifications means
that the restriction of N(o): Cpt” — N(€) to O" induces a map of 2-marked simplicial sets
05, Cpt" — (N(€), €, E2). Condition (1) in the definition of morphisms means that the restric-
tion of N(v): Al x Cpt"™ — N(€) to Al x 0", where v is regarded as a functor [1] x Cpt" — C,
induces a map of 2-marked simplicial sets (Al)ﬁ?a} x 65, Cpt™ — (N(C), €1, E2). See Definition
1.3.9 for the notation (—)ﬁ%ﬂ}.

We now define compactifications in oco-categories, and more generally in simplicial sets. Be-
sides the need to deal with simplices of higher dimensions, the definition is more complicated in
two other ways: we consider an extra set K of “directions” and we consider restrictions not only
on edges, but also on squares, which leads to the use of multi-tiled simplicial sets.

Definition 1.4.3. Let K be a set and let (X,T) be a ({1,2}]] K)-tiled simplicial set. For
L C K, integers n,n; > 0 (k € K), a map 7: AZ’”’“‘IQGK — 610}HKX, and a € {1,2}[[ K, we
define Xpt®(r) = Kpt iy 7 (1), the a-th simplicial set of compactifications of T, to be the limit
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of the diagram
(1.6)

(LK Map(Cpt” & AZk\keK,5>(k{1,2}HK)D(X7 )

g

resi

Map(Cpt™ x A[L"k]keK’X) Map (O™ x Ag"lk]keK7X)

lresz

{r} > Map(A7"r, X)

in the category Seta of simplicial sets, where

we regard 7 as a map A[Ln’"’“]ke’( — X, hence a vertex of Map(A[Ln’"k}’“eK,X);
res; is induced by the inclusion (0" C Cpt™;

ress is induced by the diagonal map A™ — Cpt™; and

g is the composition of maps

Egl,Q}HK Map(Cptn X Azk‘kGK, 5£{1,2}HK)D(X’ ‘I))
N 6iéLZ}HI( Map(Cptn X Azk‘kEK’ 5i1,2}HKX)
~ Map(O" x AlrHeer xy,

where the isomorphism is the adjunction formula of Remark 1.3.6.
For a ({1,2} ][ K)-marked simplicial set (X, &), we put Kpt§ ¢(7) = Kptyy x ¢)(7), where
W is the functor in Notation 1.3.15. We put Kpt®(7)r = Kpt®*(7) if @ € L, and Kpt*(7) =
Kpt*(r)°P if « € L.

For brevity, we sometimes write I for {1,2} [] K.

Remark 1.4.4. Let us give a more explicit description of g in (1.6). To simplify notation, we let
Y denote the source of g. We let ¢, : {1} — I denote the map with image . For any simplicial
set S, we have isomorphisms

(A*)*S, Map(Cpt" B AJFER 510X, 7)))
(A=) S x (Cpt" ® AR 610X, 7))

Homget , (5,Y) ~ Homget, , (
(

~ Homg,, o (d75(A")"S x 5j5(Cpt" B AT 5), (X, 7))
(

~ Homget,

~ Homg, 1o V(SHar) x W3, (Cpt"™ B ATHFER) (X 7)),

where V and W are the functor in Notation 1.3.15. Here in the last step we have used the
isomorphisms

i0(A%)"S = V(SH), 5in(Opt" B A}EN) ~ Wat, (Cpt" B ARHEE).
We define {Fs}per by the isomorphism
8, (Cpt" ®APFERY o (@ almdver rgy, ),
In other words, F3 is the set of edges of eé(Cpt" X AZ"'““EK), for all 5 € I. Then,

e A vertex of Y is precisely a map of I-marked simplicial sets 6;5(Cpt" X AzklkEK) —
(X,7). In other words, a map o: O" x A[I?"']’CGK — X is a vertex of YV if and only if it
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carries Fg« Fg into Tgp for all 8,8’ € I with § # 8'. As we observed in Remark 1.3.13,
the condition implies that o carries Fg into T3 for all 3 € I.

e Given vertices o, o’ of Y, an edge v: 0 — ¢’ of Map(O" x A[Ln’“]keK,X) is an edge of Y
if and only if, for every g € I, 8 # a and for every square

(1.7)

y ——y
x'%i

in F, * I, with vertical arrows in F, and horizontal arrows in Fg, v carries the square

L

(1,2") ——(1,z)

to a square in T,5. Here we have regarded v as a map Al x (O" x A[Ln’“]’“g() — €. We
note two special cases of the condition:

(1) For every edge y — = in F, v carries (0,y) — (1,x) to an edge in T,.

(2) For every B € I,  # o and for every edge ' — x in Fg, v carries the square

(0,2') —— (0, 2)

e

(171'/) - (1,.’£)

to a square in JTog.
If Top is stable under composition in the first direction for every 3, then Condition (2)
is also a sufficient condition for v to be an edge of Y.
e For m > 2, an m-simplex v of Map("™ x A%’“]’“EK,X) is an m-simplex of Y if and only
if each edge of v is an edge of Y.
In particular, g satisfies the (unique) right lifting property with respect to 9A™ C A™ for m > 2.

Remark 1.4.5. In the situation of Definition 1.4.2, we have a canonical isomorphism
:Kpt%(@)ﬁhﬁz(ﬂ ~ N(Kpt¥(7)). We will see in Lemma 1.4.19 that the simplicial set
Kptfx ) is an co-category under mild hypotheses.

Remark 1.4.6. We let D™ denote the intersection of 0" and the diagonal embedding A™ — Cpt™.
Then D" is the disjoint union of n + 1 points. Note that the diagram (1.6) can be completed
into a commutative diagram

Map(€pt™ x Almlkex x) ¢! Map(Cpt" ® ATFEK 510X 7))
—— ]
g

Map((T" LIy A") x Aser X) o Map(0" x Al+er x)

resg
ress

T Map(A™ x A[nk]lcEK,X . Map(D" x A[nk]’“EK7X
L L

)

where the lower right square is a pullback. Here the maps in the lower right square (including
ress) and resy are obvious restrictions. If X is an oco-category, then res;, 2 < i < 4 are Cartesian
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fibrations (and coCartesian fibrations) by [52, Proposition 3.1.2.1] and res; is a trivial Kan
fibration by Lemma 1.6.7 and [52, Corollaries 2.3.2.4, 2.3.2.5]. Moreover, res; is an isomorphism
if X is isomorphic to the nerve of an ordinary category.

Remark 1.4.7. We have introduced K in the definition mainly for convenience. In the case
where « € {1,2}, which is our main case of interest, we could reach the same generality without
K. In fact, we can define a {1,2}-tiled simplicial set (X', T’), where X’ is the full simplicial

subset of Map(A[g’“]’“EK, X) spanned by maps corresponding to maps AzklkeK — 0KO(X,Tk) C
0K X (where T denotes the K-tiling induced by T), with the following property: If 7 defines
an n-simplex 7’ of X', then we have an isomorphism Kpt iy ) (T) = prt?X,,T,)(TI); otherwise
Kpt{x, o (1) is empty.
Note that by Remark 1.3.6, the map g is also equal to the composition
6l{ll,z}HK Map(Cpt" K AZk‘keK, 5£{172}UK)‘:|(X’ 7))

5?1,2}1_11(

Map(T" x AP 57, et 00 (00, )
< Map(0"® x Alier g oot b2 X
— Map(0" x Almlrer x),
where the last map is induced by the counit map. We consider the composition
(1.9) 6(r): Kpt* (7)1, — eop], Map(Cpt" B AT, 510(x, 7))
%y Map(@" x Alrleex 57 | 619(X, 7)),
which will be used in the proof of Theorem 1.4.14 below.

Remark 1.4.8. By construction, the composition

5pt (7)1, 2 Map(O" x Alsleer 67 510(X, 7))

— Map(D" x Alnleer 57 ) 515X, 7)),
where the second map is induced by the inclusion D™ C 0" (see Remark 1.4.6 for the notation),
is constant of value 67 ; 79, where

T0: 02(D") R ATHFER 6T x
is the restriction of 7. If Kpt®(r) is nonempty, then 7y factorizes through §/5(X,T).

Next we consider ({0} ] K)-tilings. Let (X, J”) be a ({0} ] K)-tiled simplicial set. For brevity
we sometimes write J for {0} [[ K. For L C K and &' € J, we have the commutative diagram
(1.10)

e, Map(€pt™ B ATFFEK 510X 77))C ¢, Map(€pt™ B ATFFEE 57 x)

‘”i ig

Map(Cpt" x A 55570(X, 7)) Map(€pt™ x A< 6567 X) Map(€pt" x Aker )

by Remark 1.3.6. This is similar to the situation of the map g in Definition 1.4.3.
To compare the restricted multisimplicial nerves of (X,T) and of (X,J"), we make some
assumptions.

Assumption 1.4.9. Let (X,T) be a ({1,2}]] K)-tiled simplicial set and let (X,T’) be a
({0} [ K)-tiled simplicial set. Consider the following assumptions:
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(1) For o: A? - X with 0 od3 € T1, 0 0 d3 € T2, we have o o d} € T}.

(2) For k € K and 0: A% x A! — X satisfying o o (d2 x id) € T1, 0 o (d3 x id) € Ta, we
have o o (d? x id) € T},.

(3) For k € K, we have T;, C T}.. For distinct elements k, k' € K, we have Ty C T7,,.

Note that (2) implies (1) if K is nonempty.

Remark 1.4.10. Assumption (1) implies T1,To C Tj. Conversely, if we have T7,T2 C T) and
T{, is stable under composition, then Assumption (1) holds. Similarly, Assumption (2) implies
Tik, Tor € T(j, Conversely, if we have Ty, Top € T(,, and Tj, is stable under composition in the
first direction, then Assumption (2) holds.

We consider the maps po: {1,2} — {0} and p = po[Jidr: {1,2} [[K — {0}]] K. For
brevity, we sometimes write I for {1,2} [[ K and J for {0} [[ K.

Lemma 1.4.11. Suppose that Assumption 1.4.9 is satisfied. Then

(1) The isomorphism sIHBIE X (A“)*JiO}HKX induces an inclusion

(2) The pullback of g by res; in Definition 1.4.3 factorizes through the upper-left corner of
the diagram (1.10) with o = p(c).

Proof. (1) We have
5}=DAnk|k€I — W5?+Ank|k€l’ 6;D(Ap)*Ank|k€I ~ W63+(A[n1,n2] X Ank\kEK).

We let G5 denote the set of edges of eéA”k““EI for 8 € I, and let Gy denote the set of edges of
e (Alom2l 1 AnklRERY - Then we have

07 AIFE o (Alelver {Gghser),
8 (Alrrmel g AmIRERY) o (Almdver (G5 ).

Thus an (ng)ger-simplex of §/59(X,T) is given by a map o: Al*lver — X carrying G into Ts
for all 5 € I and carrying S * Gp into Tgg: for all 8,8" € I, B # .

Let us show first that o carries Gg into ‘Tz, for all B € J. For 8 € K, this follows from the
assumption Tg C T, An edge e in Go has the form (4,5,a) — (i’,j',a), where a = (ak)rex-
Consider the 2-simplex

"

(ivjva) e*> (ivj/7a)

Ny

(¥4 a)

of AlPklker swhere ¢/ is in Gy and e’ is in Go. By Assumption 1.4.9 (1), o(e) is in T).
Next we show that o carries Gg * G/ into ‘.sz, for all 8,8 € J, 8 # . For 3,8 € K, this
follows from the assumption Tgs: C T}, It remains to show that o carries Go * G into Tj)4 for

B € K. Every square s in Gg * G5 can be extended to a map A% x Al — Alrklker a5 shown by
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the diagram

(i7jab) - (iaj’ a)

L

(iuj/ab) - (7;7j/aa)

L

(ilvj/7 b) - (i/mj/v a)
with ¢ as the outer square. The upper square is in Gz * Gg and the lower square is in G; * G3.
Thus, by Assumption 1.4.9 (2), o(c) is in Tpp.
(2) We let Y’ denote the pullback of g by res; and let Z denote the upper-left corner of
the diagram (1.10). We adopt the notation of Remark 1.4.4. Note that for 8 € K, F3 can be
identified with the set of edges of eé(@pt" X AE’“'kEK). We let F denote the set of edges of

€7 (Cpt" ® A’LL""kEK). Then
5%, (Cpt™ R ARy~ (eptn x Almlrer ggy oy

Note that Z admits a description similar to the description of Y in Remark 1.4.4. In particular, for
m 2= 2, Z < Map(Cpt™ x A[Ln’“]kGK,X) has the right lifting property with respect to 9A™ C A™.,
Thus it suffices to check Y/ C Z on the level of vertices and edges.

Let o: Cpt™ x A[L"’“]’“EK — X be a vertex of Y’. To show that o is a vertex of Z, we need to
check that o carries T to T for all 8 € J and carries Fg * Fpr to Tpys for all 8, 8" € J, B # B
The proof is similar to that of (1). Note that for every edge (i,5) — (i',5') of Cpt™, (i,5') is a
vertex of Cpt™.

Let v be an edge of Y, regarded as a map A! x (Cpt™ x A[L"’“]“K) — X. To show that ~ is an
edge of Z, we first check that for every edge y — x of F,(,), 7y carries the edge e: (0,y) — (1,x)
to an edge in 7/;(@)' If @ € K, then this follows from the assumption T, C T,. If a € {1,2},
then e can be completed into a 2-simplex of the form

0,1 'ae—”>a—1i"a
(’7.]7 77.7’

(1,4, 5", a).
Since y(€’) is in T7 and (") is in Ty, we have y(e) € T} by Assumption 1.4.9 (1). Finally we
check that for every 8 € J, 8 # u(a) and every square of the form (1.7) in F,,) * T with

vertical arrows in J,,) and horizontal arrows in g, v carries the square (1.8) to a square in
Tllt(a)/?' If o, 8 € K, then this follows from the assumption Tz C T:x,@' In the remaining cases

we apply Assumption 1.4.9 (2). If 5 = 0, we factorize the square horizontally. If o € {1,2}, we
factorize the square vertically, with the first component of the middle row given by « — 1. O

Construction 1.4.12. The main result of this section, Theorem 1.4.14 below, is about the
composition

. 2MIK)O . « «({1,2}UK)D
(1.11) Sty 8t ONX T) & 67y (A SR )
* * L O
= 0{oyur, L (AF)" (A )*5£{0}HK) (X,7)
X 1K)O
4>5{0}HK,L5£{0} ) (X, 7,
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where the inclusion in the middle is given by Lemma 1.4.11 (1) and the last map is the counit
map. An n-simplex of the left hand side of (1.11) corresponds to a map A™ x A" x (AM)K — X.
The map (1.11) carries it to the n-simplex corresponding to the composition

diagxid(An>K
_—

A" x (A™M)K A" x A" x (AME - X,

where diag: A™ — A™ x A" is the diagonal map.

|keEK K . -
For any map 7: AZ’”’“' R 5i0} X, we consider the composition

(1.12) P(r): Kpt®(r)p — el{(a)opi Map(Cpt" X AZ’“IkGK, §75(X, 7))
2, Map(@pt™ x Almleer g% 570(X, 7)),
where the first map is given by Lemma 1.4.11 (2). We have a commutative diagram

P(7)

Kpt* ()L Map(€pt" x Alnleex 5% 670(X, 7))

) |

Map(" x Alnlker g% | 5ID(X, T) —— Map(O" x Alreleer g% | 575(X,77)),

where ¢(7) is defined in (1.9), the lower horizontal arrow is induced by (1.11), and the right
vertical arrow is the obvious restriction.

Remark 1.4.13. By construction, the composition

Kpte (), 2 Map(€pt™ x Alleer g% 570(X, 7))

— Map(Alrmelier g5 675(X,77)),

where the second map is induced by the diagonal embedding A™ — Cpt™, is constant of value
8% 7. 1f Xpt®(7) is nonempty, then 7 factorizes through §I0(X, 7).

Theorem 1.4.14 (Multisimplicial descent). Let K be a set and let oo € {1,2} [[ K be an element.
Let (X,7) be a ({1,2} [ [ K)-tiled simplicial set and let (X,T") be a ({0} [[ K)-tiled simplicial set,
satisfying Assumption 1.4.9. We assume that prt?XJ) (1) is weakly contractible for everyn =0
and every (n,ng)rex -simplex T of 5£{0}HK)D(X, T") with n, = n. Then, for every subset L C K,
the map

{1,2}HK)D(X T) {O}HK)D(X )

[ 5?1,2}11}(@55k - 5EO}HK,L5£

composition of (1.11), is a categorical equivalence.

Note that the assumption that the simplicial sets Kpt®(7) for those 7 are nonempty implies
that T, = T7, for all k € K, and Ty = T}, for all k, k' € K with k # k.

In the case K = ) and T = X;, Assumption 1.4.9 is clearly satisfied and the theorem takes
the following form.

Corollary 1.4.15. Let a be 1 or 2. Let (X,T) be a 2-tiled simplicial set such that Kpt{y (7)
1s weakly contractible for every simplex T of X. Then the map

foo300(X,T) = X

induced by the counit map 0502X — X is a categorical equivalence.
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Proof of Theorem 1.4.14. We let Y and Z denote the source and target, respectively, of the map
f in the statement of the theorem. Consider a commutative diagram

Y —% = Fun(A!, D)

1

7Z — = Fun(0A!, D)

as in Lemma 1.1.9. Let o be an n-simplex of Z, corresponding to a map 7: AZ’”’“lkEK —
675(X,T7), where nj, = n. Consider the commutative diagram
(1.13)

N(o) Fun(Al x Cpt™ x Alrklrex D) Fun(Al x A™ D)

| - |

Kpt*(7)L h Fun(H x Alnsliex D) ——» Fun(dA! x Cpt™ x Alrslvex D) 2 Fun (Al x A", D) ) ress

\\\\\;:;E;T\\\\ﬁi l

Fun(Al x " x A[nk]keK,'D)

ress

Fun(A! x D", D).

In the above diagram,
e res; is induced by
jrH=Ax0O" J[ 0A"xept” < Al x ept™;
OALxOn

h is the amalgamation of v,¢(7) and w.(7), where
0, (1) : Kpt® (1) — Fun(Al x O" x Alrelkex D)
is the composition of (1.9) and the map induced by v, and
w, (1) : Kpt® (1), — Fun(dA! x Cpt™ x Alrxlrer )
is the composition of (1.12) and the map induced by w;

e N(o) is defined so that the upper left square is a pullback square;

e the two maps res, are both induced by the diagonal embedding A™ C Cpt™ x Almslkex,

e D" is as in Remark 1.4.6;

e ress is induced by the diagonal embedding D" C " x Al*klkex; and

e resy is induced by the inclusion D™ C A™;

e the unnamed arrows in the middle column and in the upper right square are obvious
restrictions.

By Lemma 1.6.7 and [52, Corollaries 2.3.2.4, 2.3.2.5], the map j X id y(n4),cx is inner anodyne,
and consequently res; is a trivial Kan fibration. Thus N(o) is weakly contractible.

We let ®(0): N(0) — Fun(A! x A", D) denote the composition of the upper horizontal arrows
in (1.13). We let 0g: D™ — Z denote the restriction of o. Since f induces a bijection on vertices,
oo factorizes uniquely through a map D™ — Y, which we still denote by oy. By Remark 1.4.8,
ress o v, P(7) is constant of value v(og). It follows that resy o ®(o) is constant of value v(oy). In
particular, ®(c) induces a map

N(0)* x (A™)” — Fun(A!, D)’ C Fun(A!, D)5
Thus ®(o) induces a map N(o) — Map*((A™)”, Fun(Al, D)%), which we still denote by ®(c).

This construction is functorial in o, giving rise to a morphism ®: N — Map[Z, Fun(A!, D)] in
the category (Seta)(A/2)"",
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By Remark 1.4.13, the composition of the middle row of (1.13) is constant of value w(o).
Thus Map|[Z,p] o ®: N — Map[Z, Fun(0A!, D)] factorizes through the morphism A(()A/Z)op —
Map[Z, Fun(dA!, D)] corresponding to w via Remark 1.2.7.

Now let ¢’ be an n-simplex of Y corresponding to a map 7’: AZ’”’"’“WGK — §I5(X,7). By
restricting to Cpt™ C Al we obtain a vertex of Kpt® (7). By restricting the composition

AmmnklkeR T opidiD(X, 7) & 6L Fun(Al, D),

we obtain a vertex of Fun(A! x Cpt™ x Alslkex D). The two vertices have the same image in
Fun(H x Al"lkex D) and hence provide a vertex v(o”) of N(f(o”)), whose image under ®(f(c”))
is v(o’). This construction is functorial in ¢, giving rise to v € T'(f*N)q such that f*®ov = v.
Applying Proposition 1.2.15 to ®, the map f: Y — Z and the global section v of f*N, we
obtain a map u: Z — Fun(A!, D) satisfying p o u = w such that u o f and v are homotopic over
Fun(0A!, D), as desired. O

Next we show that in a favorable case, the weak contractibility condition in the theorem can
be reduced to a weak contractibility condition on a 2-marked simplicial set.

Theorem 1.4.16. Let C be an co-category and K a finite set. Consider a ({0,1,2} [[ K)-marked
oo-category (€, Ep, €1, E2, {€k }kek) such that

(1) €1,E2 C &o;

(2) &o is stable under composition;

(3) €1, & are stable under pullback by &y for all k € K;

(4) & is stable under pullback by &1 for all k € K; and

(5) edges in & admit pullbacks in C by edges in &1 for all k € K.

cart

Then for every (n,ny)kek -simplex 7 of the ({0} [] K)-tiled oco-category €&y _ , the restric-
tion map Kptfe oy(7) — KptG e, ¢,(7), where 7 is the restriction of T to A™ x {(n)rek},
is a trivial Kan fibration for every o € {1,2}. Here (C,7T) = (C,&1,82,{&k}rek,Q) is the
({1,2} ][ K)-tiled co-category in which Q is determined by the conditions

Q2 = &1 *¢ €, Qij =&; *Ceart 8ja (ivj) 7é (152)7 (27 1)-

Kpt‘é,ghgz(y) is weakly contractible, then, for every subset L C K, the map

Moreover, if for some a € {1,2} and for every simplex v of Ce¢, C C, the simplicial set

cart

1,2}I1K)0 X
5’(k{ Y (G’T) _>5{0}HK7L680x{8k}kEK

I: 6 1.2VIIK.L
. { ) } )
Z’S a Ca/teg07 ical equivalence.

Proof. By Lemma 1.3.22 and Condition (2), & &' €, k € K are stable under composition
in the first direction. Thus by Remark 1.4.10 and Conditions (1) and (2), Assumption 1.4.9 is
satisfied for (C,7) and G‘éirf{gk}ky(. By Theorem 1.4.14, it suffices to show the first assertion.
Indeed, the assumption that Xptg ¢, ¢, (7) is weakly contractible then implies that JCpt’(lem (1)

is weakly contractible.
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We let 0o = (ni)rex denote the final object of [ng|rcx = [[1cx[nr]. We have the following
commutative diagram

(1.14) iKpt?eJ) (7’) gcpt(éghgz (’Y)

| |

Fun(€pt”™ x Almlrer, @)pycp — X’ X

|

Fun(N(Q) UN(R), €),

resa

Fun(N(Q U R), C)

where

Q = [n] x [nk]kex C Cpt" X [ni]rex is induced by the diagonal inclusion [n] C Cpt™.

R = Cpt" x {oo} C Cpt" X [np]kek-

o Fun(Cpt™ x Alslrex @)pxp C Fun(Cpt™ x Al*klkex @) is the full subcategory spanned
by functors F: Cpt™ x AlPklkex — @ which are right Kan extensions of F' | N(Q U R).

e X' C Fun(N(Q U R), @) is the full subcategory spanned by functors F' such that the
composition N(QU R); ;. — N(QUR) ', @ admits a limit for every vertex (i, j,p) of
Cpt™ x Alrwlrex,

e X C Fun(N(Q) UN(R),C) is the full subcategory spanned by functors F' such that the

diagram

(1.15) F(i, j, 00)

|

F(]?.77p) - F(j,],OO)

admits a limit in € for every vertex (i, j,p) of Cpt™ x Alrklrer,

e The horizontal arrows are restrictions. We will check that resy carries K’ into X below.

e The lower vertical arrows are inclusions.

e The upper right vertical arrow is the amalgamation of the inclusion prt%yShSQ('y) C
Fun(N(R), €) with 7, viewed as a vertex of Fun(N(Q), €). The fact that the image is in
XK follows from Conditions (3) and (5) (Condition (3) is needed if #K > 2).

e The left vertical arrow is induced by the inclusion
:Kpt?e,ﬂ’)(T) c Flln(ept" X A[nk]k€K7e).

We will check that the image is contained in Fun(Cpt™ x Al*lkex @)gip below.
For any vertex (i, j,p) of Cpt™ x Alslkex we let g: A' x Al — Cpt™ x Allkex denote the
square

(i’jvp) - (ivja OO)

L

(j?j7p) - (jvjaoo)
We have A! x A' ~ ((A§)°")?. The induced map A§ — (N(Q U R)(; /)" is cofinal by
Lemma 1.4.17 below. Thus a functor G: Cpt” x Al*lkex — @ is a right Kan extension of
G | N(Q U R) if and only if G o g is a pullback square, for all (¢,4,p). For any vertex G of
Kpt?e,‘r) (1), regarded as a functor G': Cpt™ x AlPlkex — @ the square G o g is obtained by a

finite sequence of compositions from squares in Ty, = €1 *F* &, k € K. Therefore, the image of
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Kpt{e () € Fun(Cpt™ x Alrelrex @) is contained in Fun(Cpt™ x AlMklkex @)y, Moreover, if

F:N(QUR) — Cis a functor, then the composition N(QU R)(; j,,y;, — N(QUR) L € admits a
limit if and only if the diagram (1.15) admits a limit. Thus ress carries X' into X and the lower
right square in a pullback.

By [52, Proposition 4.3.2.15], res; is a trivial Kan fibration. We apply Lemma 1.6.4 to show
that the inclusion N(Q) U N(R) € N(Q U R) is inner anodyne. For this we need to check
that Q U R = Q]_[Qm r R is a pushout in the category of partially ordered sets (see Remark
1.6.3). Let (i,i,p) be in Q and (¢/,7',00) in R. If we have (¢/,j’,00) < (4,%,p), then p = oo
so that (i,4,p) is in @ N R. On the other hand, if we have (i,4,p) < (¢/,j',00), then we have
(i,1,p) < (i',4',00) < (¢/,4',00). It follows that res, is a trivial Kan fibration.

To show that the upper horizontal arrow is a trivial Kan fibration, it remains to show that,
ignoring the middle term in the second row, the upper square of (1.14) is also a pullback square.
This amounts to saying that for every m-simplex o of Fun(Cpt™ x Al"slkex @)rkp, if the restric-
tion of o to N(Q) is 7 and the restriction of o to N(R) is in Kptg ¢, ¢,(7), then o is a simplex
of Kpt?‘eyfr)(r). By Remark 1.4.4, it suffices to treat the cases m =0 and m = 1.

Case m = 0. Consider integers 0 < ¢ < i < j < j/ < n and a morphism p < q of [nglkek-
Since o: Cpt™ x Al*rlrex — @ is a right Kan extension of o | N(Q U R), it carries the outer and
right squares of the diagram

(ivjzp) - (ivjaq) - (ivjroo)

R

(j:jap) - (ja.j7Q) - (.77.]’00)

to pullback squares. It follows that ¢ carries the left square to a pullback square. Thus, since
the restriction of o to N(Q) is 7, o carries Fj to &, for all k € K by Condition (4), where Fy, is
defined in Remark 1.4.4. Moreover, since o carries the outer and lower squares of the diagram

(iajvp) - (iaj7 q)

L

(i/aj7p) - (i,7j7q)

L

(J:4>p) —— (3,3, 9)

to pullbacks, it carries the upper square to a pullback. Taking ¢ = oo, Condition (3) then
implies that o carries (4, ,p) — (i',4,p) to a morphism in &;. It follows that o carries F; x Fy,
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into &; x4t &, for every k € K. Consider the cube

(4,5, p) (i,7,9)
|
S N
(4,5, p) ‘ (i,5",q)
v
(ij»p\ ***** > (]7]5‘])\
('3 p) 7.7 4).

The image of the bottom square under ¢ can be obtained by a finite sequence of compositions
from squares in &y @™ &, k € K. Since o carries the front and back squares to pullbacks as
well, o carries the top square to pullback. Taking ¢ = oo, Condition (3) then implies that o
carries (4,4, p) — (4,5, p) to a morphism in &,. Tt follows that o carries Fo* Fy, into o+ & for
every k € K. Finally, given a square S in Fy, « F; for distinct k,1 € K, let (,7) be its projection
in Cpt™ and T its projection in Al"*lkex Then S can be identified with the top face of a cube,
product of the edge (i,7) — (j,j) and the square T. Since o carries the other five faces of the
cube to pullback squares, it carries S to a pullback as well.

Case m = 1. We check Condition (2) in Remark 1.4.4. For 0 < i < j < nand p < ¢ in
[nk]kek, consider the following cube in Al x Cpt™ x Alrklkex:

(0,4,7,p) (0,4,7,9)
|
|
\ N ‘ \ .
(0,7,4,p) % (0,4,7,9)
\
\
\
(1727.7729) 777777777 >(17iaj7q)
\ .
(17j7jap> (17.77]7(1)

Since o: Al x Cpt™ x Al"slkex 5 @ carries the top and bottom squares to pullbacks and carries
the front square to the identity on 7(j,p) — 7(4,¢), it carries the back square to a pullback.
Taking g = oo, Condition (3) then implies that o carries (0,4, j,p) — (1,4, j,p) to a morphism in
Ea- O

Lemma 1.4.17. Let P be a partially ordered set and f: A2 — N(P) a map. Assume that f(0)
is the product (namely, supremum) of f(1) and f(2) in P, and P/y1yU P/f2) = P. Then [ is
cofinal [52, Definition 4.1.1.1].

Proof. By [52, Theorem 4.1.3.1], it suffices to show that for every p € P, the simplicial set
S = A} xXn(p) N(Pp/) is weakly contractible. By the second assumption, either p < f(1) or
p < f(2). If exactly one of the two inequalities holds, then S is a point. If both inequalities hold,
then p < f(0) by the first assumption, and hence S = A3. O
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Remark 1.4.18. In Theorem 1.4.16, the Cartesian restriction on & xe¢ &; for k,I € K is not

essential. To be more precise, under the assumptions of the theorem, consider an I-tiling T =

((Ei)ieb(Q’ij)i,jeI,i;ﬁj) and a J—tiling T = ((8i)ieJ7(Qi]‘)i,jeJ7i¢j) such that ng = 81 *e 82,

Qi = & +F & for i = 0,1,2 and k € K, and Qp C & *e & is stable under pullback by
cart

Q=€ *‘é‘“t & in the first direction or stable under pullback by Qi1 = & *§"" €1 in the second
direction for k,l € K, k # I. Then the proof shows that the restriction map j{pt?&T)(T) —

Kpte e, e,(7) is a trivial Kan fibration for every (n,ng)rex-simplex 7 of (l(k{O}HK)D(X, J7), and
if KXptg e, e,(7) is weakly contractible for every 7, then

Vg 5?1,2}HK,L6£{172}HK)D(X3 J) = 6?0}HK,L5>(F{O}HK)D(X3 T)
is a categorical equivalence.

As promised, we give sufficient conditions for the simplicial set Kpt®(7) to be an co-category.

Lemma 1.4.19. In the situation of Definition 1.4.3,

(1) Assume that Top is stable under composition in the first direction (Definition 1.3.21) for
all € {1,2} |1 K, B # . Then the map g is an inner fibration. Moreover, if X is an
oo-category, then Kptfy ) (1) is an oo-category.

(2) If we have (X,T) = W(X,E&) and &, is composable (Definition 1.3.17) and X is an
oo-category, then Kpts ¢ (7) = Kpt{x o(7) is an co-category.

The assumption in (1) implies that T, is stable under composition. The assumption in (1) is
satisfied if we have (X,T) = W(X, &) and &, is stable under composition.

Proof. By Remark 1.4.4, g satisfies the right lifting property with respect to every horn inclusion
A C A™ for m > 3. Thus, for the first assertion of (1), it suffices to show that g satisfies the
right lifting property with respect to A? C A2. We use the notation of Remark 1.4.4. Let v be
a 2-simplex of Map((J™ x Al"#lkex X') such that the restriction of v to A? factorizes through Y.
We regard v as a map A2 x (00" x Al"lkex) 5 X For any square in F,, * Fj of the form (1.7),
consider the map A% x A' — A% x (O™ x Al"slrex) as shown by the diagram

(Ov y,) - (0’ y)

L

(17y/) - (Ly)

L

(2,2") —— (2, ).

By assumption, 7 carries the upper and lower squares to squares in T,3. (We could replace the
second row by (1,2") — (1, ) without affecting the validity of the argument.) Since T,z is stable
under composition in the first direction,  carries the outer square to a square in J,g. Therefore,
the restriction of v to A{%2} is an edge of Y.

The second assertion of (1) follows from the first assertion of (1) and the fact that res, is an
inner fibration if X is an oco-category (Remark 1.4.6).

For (2), note that by Remark 1.4.6, we have a diagram with pullback square

Kpt*(7) Z Y

lres;; og

{r} —— Map(D" x Allrer x),
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where Z denotes the fiber of the map ress o g at 7, and the map Xpt®*(r) — Z is a pullback of
the map res; in Remark 1.4.6, hence an inner fibration. Thus it suffices to show that Z is an
oo-category. Since ress is an inner fibration and g satisfies the right lifting property with respect
to every horn inclusion AJ* C A™ for m > 3, it suffices to check that Z satisfies the extension
property with respect to A? C A% Let f: A2 — Z be a map. Unwinding the definition, to show
that f extends to a map A? — Z, we are reduced to showing the extension property

(4,41 NG) — = (X, E.),

(B.9)
where we have (B, §) = (A2)f x (O™ x A[f’“]"‘EK,S"a) and
A= A2 x (O" x Alrer) 11 A2 x (D" x Alrrer),

Afx(D"xA[Ln’”“]keK)

and f’ is the amalgamation of f and 7. Every edge in G that is not in A has the form (0,y) —
(2,2) with y — z in F,, and can be extended to a 2-simplex of B

(Ly)
0,y) (2,2),
where the oblique edges are in A; N'G. (Again we could replace (1,y) by (1,z).) Therefore, it
suffices to apply Lemma 1.3.20. d

We now give a criterion for the weak contractibility of certain oo-categories of compactifica-
tions.

Theorem 1.4.20. Let (C,&1,E2) be a 2-marked co-category. Suppose that the following condi-
tions are satisfied:

(1) &1 and &3 are composable (Definition 1.3.17).
(2) The co-category Ce, admits pullbacks and pullbacks are preserved by the inclusion Cg, C
C

(3) For every morphism f of C, there exists a 2-simplex of C of the form

(1.16) y
X

Then, for every n-simplex T of C, the simplicial set ﬂ(pté’ghgz(ﬂ"p is a filtered co-category and
s weakly contractible. Moreover, the natural map

z €T

with p € €1 and q € 4.

(55631732 — €
s a categorical equivalence.

Recall that an oo-category is said to be filtered [52, Definition 5.3.1.7] if it satisfies the extension
property with respect to the inclusion A C A for every finite simplicial set A. Recall also that
an ordinary category is filtered if and only if its nerve is a filtered co-category [52, Proposition
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5.3.1.13]. Thus in the case where C is the nerve of an ordinary category, the first assertion of
Theorem 1.4.20 generalizes [3, Exposé xvii, Proposition 3.2.6].

Remark 1.4.21. Condition (2) of Theorem 1.4.20 is satisfied if the following conditions are sat-
isfied:

(a) morphisms in &; admit pullbacks in € by morphisms in &;
(b) &; is stable under pullback by &;
(c) for every 2-simplex of € of the form (1.16) such that f and p are in £;, ¢ is in &;.

Indeed, Condition (c) implies that for every diagram a: A — €, where A is a nonempty simplicial
set, the overcategory (Ce,)/, is a full subcategory of €4, so that a diagram a: A% — Cg¢, is a

limit diagram if the composition A9 % C¢, — € is a limit diagram. Note that Conditions (b)
and (c) hold if &; is admissible (Definition 1.3.18).

Proof of Theorem 1.4.20. For brevity we write Kpt!(r) for :Kptle’gl,((h(T). Since &€; is compos-
able, Kpt!(7) is an co-category by Lemma 1.4.19. It suffices to show that Kpt!(7)°P is filtered.
In fact, every filtered oo-category is weakly contractible [52, Lemma 5.3.1.18]. The last assertion
of the proposition then follows from Corollary 1.4.15.

By [52, Remark 5.3.1.10], Kpt!(7)? is filtered if and only if Kpt!(7) has the extension property
with respect to the inclusion A C A< whenever A is the nerve of a finite partially ordered set.
We fix such an A and proceed by induction on n. For n = 0, Kpt!(7) is a point and the assertion
holds trivially.

For n > 1, by the induction hypothesis, the composite map f_1: A ER Kpt! (1) — Kpt! (rod?)
extends to g_1: AY — Kpt!(7o0d?). We identify Cpt™~! with its image under d”, hence with the
full subcategory of Cpt™ spanned by the objects (i,7), 1 <i < j <n—1. For 0 < k < n, consider
the full subcategory Cpt} of Cpt™ spanned by Cpt"~! and the objects (i,n) with n — k < i < n.
We have Cpt"~! C Cptl C --- C Cpt"” = Cpt™. Similarly we define Cpt} C Cpt”. Define
Kpti (1) similarly to Xpt!(7) but with €pt”, Cpt™ and 0" = §5Cpt" replaced by Cpt}, Cpt}
and 03 Cpt}, respectively. We show by induction on k that there exists a map gy : A — Kptj(7)
compatible with f; and gi_1, where fj, is the composition of f and the natural map Xpt!(7) —
Kpty (1), rendering the following diagram commutative:

The map g, will allow us to conclude the proof of the proposition.

Below are the Hasse diagrams of (the homotopy categories of) Cpt3 and Cpt3, respectively.
Bullets in the first diagram represent vertices in the image of the diagonal embedding A3 C Cpt3.
Bullets in the second diagram represent vertices in the image of the embedding A? — Cpt3 defined
later in the proof.
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We first consider the case k = 0. The map fy (resp. g_1) corresponds to a map fo: Ax Cptg —
€ (resp. §_1: AY x Cpt"™ ! — €). To find the desired map go, it suffices to construct a map
Jo: A9xCpty — C, extending fo and §_; and the composition AYx A" — A" T @, where the first
map is the projection, via the diagonal embedding A™ C Cptj;. This follows if € has the extension
property with respect to the smash product of A C A% and Cpt™ ' [[r.—1 A" C Cpt§;. However,
the latter inclusion is inner anodyne by Lemma 1.6.4 applied to Q = [n]°? and R = (Cpt™~')°P,
Thus we may find the map gy by [52, Corollary 2.3.2.4] as € is an oo-category.

For 1 < k < n, consider the full subcategory A? C €pt} spanned by {(n — k,n — 1), (n —
k,n), (n—k+1,n)}. We identify A{%2} with the subcategory of Cpt?_, spanned by {(n —k,n —
1),(n —k+1,n)}. The inclusion €pt}_; [[r0.2y A? C Cpt} is inner anodyne by Lemma 1.6.2,
and so is its smash product

S = <A< X (eptgl H A2>> U (A x Cptp) C AY x Cpt}

A{0.2}
with A C A9, We define §; and G5 by

(A% x 85Cpty, 51, G2) ~ (Aq)ﬁm x 05, Cpty.

We let —oo denote the cone point of A9. Any edge in G; but not in S has the form (—oo,n —
k,n) — (I,4,n) with [ in A and ¢ > n — k+ 1, and can be extended to a 2-simplex

(ILbn—k+1,n)
(—oo,n — (I,i,m)

with oblique edges in S1 N G;. Any edge in Go but not in S has the form (—oo,n — k,j) —
(—oo,n — k,n) with 7 < n — 1 and can be extended to a 2-simplex

—oo,n —k,n—1)

/\

(—oo,n — oo,n—k,n)

with oblique edges in S; N Go. Thus, by Condition (1) and Lemma 1.3.20, it suffices to

construct a map (5,51 N 91,51 N G2) — (C, 81,82) extending the amalgamation v: V =

A x Cpt} ]_[Axeptn A? x Cptp_; — C of fe and §p, where fp: A x Cptp — € (resp.
k—1

_1: A9 x Cptp_; — C) is the map given by fi (resp. gx—1). For this, it suffices to construct a

map (A“)ﬁi{)l) xT — (C, &1, &) extending the amalgamation of f, | A x A2 and ;1 | A9 x A02},
Here T = (A2,J,F3) is the 2-marked simplicial set with F; (resp. F3) consisting of the degen-
erate edges and the edge 1 — 2 (resp. 0 — 1).

We now lift v to a map V' — €,,(,), corresponding to a map (V*,97,95) — (C,¢&1,¢&2),
where G} is the union of (V4 N G1) U {id4} and all edges (I,i,n) — +oo in V* for | € A9,
and 95 == (V1 N G2) U {id41oo}. Here 400 denotes the cone point of V*. Consider the inclusion
t: A® — V induced by the inclusion {(n,n)} C Cpty_,. Since the restriction of v to A? is
constant of value 7(n), the amalgamation of v and the constant map A% — € of value 7(n)
provides a map v': (C*(¢), 57, 95) — (€, &1, E2), where we have C* (1) :== V][] 4. A%, and G7 is
the intersection of G} and the set of edges of C*(¢). Since the inclusions {(n,n)} C Cpty_; and
{(n,n)} C Cpt} are right anodyne by [52, Lemma 4.2.3.6], and so are their products with identity
maps [52, Corollary 2.1.2.7], the inclusion A = A[[, A¢ C V is right anodyne by Lemma 1.2.14.
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By [52, Lemma 2.1.2.3], it follows that the inclusion C*(¢) C V* is inner anodyne. Every edge
in G} that is not in G has the form (I,4,n) — 400 and can be extended to a 2-simplex

(13 n’ n’)

N

(,i,n) +oo

with oblique edges in §7. Lemma 1.3.20 then provides the desired extension of v' and hence v.
We are therefore reduced to showing that every map

a: AT X T I1 (A9 x (A2 5 (€, €], €)

2
AHy ¢ (at02) )02

whose restriction to A x AL, oy A% x AT factorizes through (C¢, ), extends to a map
(Aq)ﬁil} xT — (C/y, &1, &5). Here x is an object of C and €] denotes the inverse image of &;
via the map €, — € for i = 1,2. Recall that A is the nerve of a partially ordered set. We let
B C A? x A? denote the full subcategory spanned by all vertices except (—oo, 1). Consider the
commutative diagram of inclusions

A x A10:2} A x A2

l | T

(Ax AT o A AT, o (A x AT0ZH)T s (4 5 AZ)

| | N

AT AT s AN AT, apon AT A0

where the lower left (resp. right) vertical arrow carries the cone point of (A x A{%2})9 (resp.
(A x A%)9) to (—o0,0), and the squares on the left are clearly pushouts. For any simplex o of
B, if o is not a simplex of (A x A%)? then (—o00,2) is a vertex of o, so that ¢ is a simplex of
A9 x A192} Thus 1/ is a pushout of h, which is inner anodyne by [52, Lemma 2.1.2.3], since
the inclusion A x A102} C A x A? is left anodyne by [52, Corollary 2.1.2.7]. Thus a extends to
amap a': B — C/,. We would like to apply [52, Lemma 4.3.2.13] to conclude that there exists
a right Kan extension b: A9 x A2 — €/, of a’. The only condition we need to check for this

is that the induced diagram B(_. 1), — B a—/> C/, has a limit. However, the composite map
factorizes through ag: B(_oo 1)) = (Ce,)/»- By Condition (2) and Lemma 1.4.22 below, the oo-
category (C¢, )/, admits finite limits and such limits are preserved by the inclusion (Ce, )/, C C/5.
We therefore obtain a limit diagram bo: A% x A2} — (€, )/, extending ag and a right Kan
extension b of a’. The restriction of b to (A9 x AtL2}) U B is equivalent to the amalgamation
by of by and a’. Thus, by [52, Lemma 2.4.6.3], up to replacing b by an extension of by, we may
assume that b| A% x AtL2} factorizes through (Ce, ) .

Note that b does not necessarily carry the edge (—o0,0) — (—o0,1) into €5, which is the last
requirement to conclude that b gives rise to the desired extension (A“)ﬁl} xT = (€/g, &1, EY).
To overcome this problem, we apply Condition (3) to the arrow b((—o00,0) — (—o00,1)) to get
a 2-simplex v of €,,. Consider the totally ordered set I = {0 < 17 < 1 < 2}, which contains
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[2] = {0 < 1 < 2}. The amalgamation of v and b is a map c¢: K — €/,, where

K=A"xA* [ A{-oo}xAlT 1 cCAtxAl
{—oo}xAl
with ¢((—00,0) = (—00,17)) € & and ¢((—00,17) — (—o00,1)) € €. We let F| (resp. Fh)
denote the set of all degenerate edges of A’ and all edges of Atl™:1.2} (resp. A{O’l_}). Consider
the pushout
(L, 31, 96) = (A 00 x (AL 77,93) ] (Ax A’
(AxAT)P?

given by the degeneracy map I — [2] identifying 1~ and 1. The inclusion K C L induced by the
inclusion K C A9 x A is a pushout of the inclusion

r: ({—oo} x A%) % (49 x AtL2 11 ({—o0} x ATOTH) 5 ({—o0} x At
({—00} x A%)x({—o0} x A1)

— ({—oo} x AT} 4 (A9 x ATL2H),

Indeed, for any simplex o of L, if (—00,17) is a vertex of o, then o is a simplex of the target
of r; otherwise o is a simplex of AY x AZ. Moreover, r is inner anodyne by [52, Lemma 2.1.2.3],
since the inclusion {—oo} x AT} € A9 x AL} ig left anodyne by [52, Lemma 4.2.3.6]. Note
that we have Hy C K and c induces a map (K, Ky N3y, Hy) — (C/y, €7, E5). Moreover, any
edge in H; that is not in K has the form (—o0,17) — (I,m) with m > 1 and can be extended
to a 2-simplex

(_007 1)

N

(—OO, 1_) (l7 m)
with oblique arrows in K7 NH;. Thus, by Condition (1) and Lemma 1.3.20, ¢ extends to a map

¢ (L, 31, Hs) — (€, &1, ES). The restriction of ¢’ to A% x A2 ~ A9 x A2 provides the
desired extension. 0

Lemma 1.4.22. Let C and D be co-categories and f: C — D a functor. Assume that C admits
pullbacks and pullbacks are preserved by f. Then, for any object x of C, the overcategory €,
admits finite limits and such limits are preserved by the functor f': €, — D /re).

Proof. The morphism id, is a final object of C/, and f(id,) = id(,) is a final object of D ¢(,). By
Lemma 1.4.23 below, €/, admits pullbacks and the functors C,, — C and D,y — D preserve
pullbacks. Since the latter is conservative, the functor f’ preserves pullbacks. We conclude by
[52, Corollaries 4.4.2.4, 4.4.2.5]. O

Lemma 1.4.23. Let A and B be simplicial sets. Assume that B is weakly contractible. Let C
be an oo-category and p: A — C a diagram. Then a diagram f: B — C,, admits a limit if and

only if the composition B ER C/p — C admits a limit. Moreover, f:BY— C/p is a limit diagram
if and only if the composition B EN C/p — C is a limit diagram.
This applies in particular to the case where B = A2. In this case we have BY ~ Al x Al

Proof. We let q: Bx A — C denote the diagram corresponding to f. We let gg denote the
restriction of ¢ to B. Since the inclusion B C B x A is left anodyne by [52, Lemma 4.2.3.6], the
map €, — €4, is a trivial Kan fibration by [52, Proposition 2.1.2.5]. Therefore, €/, admits a
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final object if and only if €/,, admits a final object, and an object of €/, is a final object if and
only if its image in €4, is a final object. (|

Remark 1.4.24. In the situation of Theorem 1.4.20, for every oo-category D, the functor
(1.17) Fun(C, D) — Fun(d5Ce¢, ¢,, D)

is an equivalence of co-categories. This generalizes Deligne’s gluing result [3, Exposé xvii, Propo-
sition 3.3.2], which can be interpreted as saying that (1.17) induces a bijection between the sets
of equivalence classes of objects when C is the nerve of an ordinary category and D = N(Caty).

In the remaining part of this section, we will study a variant of the diagonal functor
05: Setan — Seta, which will allow, among other things, to express the oco-category of cor-
respondences in [25] in terms of our multisimplicial nerves. This will not be used in the later
sections of this article. Therefore, the uninterested reader may safely skip the remaining part of
this section and proceed to Section 1.5.

Definition 1.4.25. Let X be a bisimplicial set. We let 65X denote the simplicial set defined
by (635X )n = Homget,, (Cpt™, X). This defines a functor dig : Seton — Seta.

Recall that we have (03 X),, ~ Homget,, (A™", X).

Theorem 1.4.26. The map

induced by the inclusions Cpt™ C A™™ is a categorical equivalence.

Under our convention of representing the first direction vertically and second direction hori-
zontally as in (1.5), the map can be described as “forgetting the lower-left corner”. Before proving
the theorem, let us look at a few examples.

Ezample 1.4.27. For X = Cpt", we have a canonical isomorphism Cpt" ~ 455 Cpt". An m-
simplex « of Cpt™ is given by a sequence (ig,jo) < ... < (im,Jm) in Cpt"™. The isomorphism
carries a to the m-simplex of §5Cpt™ given by the map of bisimplicial sets Cpt™ — Cpt”
carrying (a,b) to (iq,js). The map f can be identified with the inclusion 0" C Cpt™, which is
inner anodyne (Lemma 1.6.7), and in particular a categorical equivalence.

Ezample 1.4.28. In the situation of Theorem 1.4.20, there exists a non-canonical categorical
equivalence 65y C¢, e, — C by Theorem 1.4.26 applied to the bisimplicial set C¢, ¢, .

Ezample 1.4.29. Given a 2-marked oco-category (C, £1, €2) satisfying certain conditions, Gaitsgory
defined an co-category of correspondences Ceorr:e,.e, [25, §5.1.2] (€1 = vert, €5 = horiz in his
notation) following an idea of Lurie. More generally, given an arbitrary 2-marked oo-category
(C, &1, &), using the above functor 03¢, one can define the simplicial set of correspondences to
be

ecorr:ﬁ'l,ﬁg = 5;V(Op%2}e?‘ir,t€2)'
In other words, we have

(Ceorr:&, &2)n = Homsgeg, (Cpt", Op%2}ef€a1r,%z ).

Applying Theorem 1.4.26 to the bisimplicial set op?Q}G‘(éffgg, we know that the natural map

* cart
2,{2}681782 — ecorr:Sl,Sm

given by “forgetting the lower-right corner”, is a categorical equivalence.
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Proof of Theorem 1.4.26. The proof is very similar to that of Theorem 1.4.14. Consider a com-
mutative diagram

05 X Fun(A!, D)

fl |

830X —2= Fun(0A!, D)

as in Lemma 1.1.9. Let o be an n-simplex of §5¢ X, corresponding to a map 7: Cpt" — X.
Consider the commutative diagram

(1.18)
N(o) — Fun(A! x Cpt™, D) Fun(A! x A™, D)

. |

AV Fun(H, D) e

Fun(0A! x Cpt™, D) —> Fun(dA! x A", D) )ress
k l’

Fun(A! x O", D)

ress

Fun(A! x D", D).

In the above diagram,

H and the maps res;, 1 <1 < 4 are defined as in the proof of Theorem 1.4.14;

h is the amalgamation of vod37: 0" — Fun(A!, D) and wo d3o7: Cpt"™ — Fun(dA!, D);
N(o) is defined so that the upper left square is a pullback square;

the unnamed arrows in the middle column and in the upper right square are obvious
restrictions.

By [52, Corollaries 2.3.2.4, 2.3.2.5], the map j: H < Al x Cpt™ is inner anodyne, and conse-
quently res; is a trivial Kan fibration. It follows that N(o) is a contractible Kan complex.

We let ®(c): N(o) — Fun(A! x A", D) denote the composition of the upper horizontal arrows
n (1.18). Then ®(o) induces a map

N(0)* x (A")” — Fun(A!, D)" C Fun(A!, D)%

Thus ®(o) induces a map N(o) — Map?((A™)”, Fun(Al, D)%), which we still denote by ®(c).
This construction is functorial in o, giving rise to a morphism ®: N — Map[d5¢ X, Fun(A!, D)]

in the category (SetA)(A/éévX)op.

The composition A™ < Cpt” M X, where the first map is the diagonal em-
bedding, is o. Thus the composition of the middle row of (1.13) is given by w(o).
Thus Map[d5oX,p] © ®: N — Map[dso X, Fun(0A!, D)| factorizes through the morphism
A(A/é* er = Map[d3g X, Fun(0A!, D)] corresponding to w via Remark 1.2.7.

Now let ¢’ be an n-simplex of §5 X corresponding to a map 7’: A™™ — X. The restriction
of vo 827" : Al»7 — Fun(A!, D) to Cpt™ C A" provides a vertex of v(a’) of N(f(0”)), whose
image under ®(f(o ')) is v(¢’). This construction is functorial in ¢’, giving rise to v € T'(f*N)g
such that f*® ov = v. Applying Proposition 1.2.15 to ®, the map f: 05X — 65X and the
global section v of f*N, we obtain a map u: 055X — Fun(Al, D) satisfying p o u = w such that
uo f and v are homotopic over Fun(0A!, D), as desired. O

1.5. Cartesian gluing. In §1.4, we gave a general criterion for multisimplicial descent (Theorem
1.4.14). It is often impossible to apply the theorem directly to Cartesian multisimplicial nerves, as
the simplicial set of compactifications for Cartesian tilings is often empty for n > 2. However, we
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have seen that certain bigger multisimplicial nerves do satisfy multisimplicial descent (Theorem
1.4.16 and Theorem 1.4.20). In this section, we complete the picture by comparing Cartesian
multisimplicial nerves with bigger multisimplicial nerves. The basic idea is to decompose a square
o in an oo-category

w

z

(1.19)

PR

S8<—«x

_ >
into a diagram o’

(1.20) w

\

I

n<—&

Y
x
where the inner square is Cartesian. More precisely, ¢’ is a right Kan extension of o along the
full embedding A x Al — (Al x AY)? carrying (0, 0) to the cone point —oo and carrying every

other vertex (i,4) to (i,7). To deal with the oblique arrow f: w’ — w, we consider the square

wW———>= W
|1

fFo

w——w.

)

id

If this square is a pullback square (which happens exactly when f is a monomorphism), we
stop. Otherwise, we apply the above procedure recursively, which leads to the diagonal map
0:w — w X w of f and the diagonal of §, and so on.

To state our result, we introduce a bit of notation. For sets of edges €1, €2, & of an co-category
G, we let &; *é & C &1 xe &2 denote the set of squares that admit a decomposition as above with
w— w' in & We have &; *Cea” &y =& *g &, where € is the set of equivalences of € (or the set
of degenerate edges of C).

The main result of this section is the following.

Theorem 1.5.1 (Cartesian gluing). Let C be an oo-category and K a finite set. Let (C,T) C
(€,7") be two ({1,2} [[ K)-tiled oo-categories such that T; = T/ for all j € {1,2}[[ K, and
Tjjr = Ty for all j, 3" € {1,2} [[ K with j # j', except when (j,7') = (1,2) or (2,1), we have
T2 =T *‘éart Ty and Ty =T *g Ts, where € C T1 N Ty is a set of edges of C. Suppose that the
following conditions are satisfied:

(1) Ty e To =T *gl Ta; T1 (resp. T2) is stable under composition and pullback by To (resp.
T1).
very morphism f in & is n-truncated for some integer n > —2 (which may depend on
2) E hism f in & i d f j 2 (which d d
f) [52, Definition 5.5.6.8]. Moreover, & is stable under composition, pullback by T1 U T,
and taking diagonals: for every edge y — x in &, its diagonal y — y X,y is in & (the
pullback y X, y exists in C by the first part of Condition (1)).
(3) For every k € K, the set Ty, (resp. Ty ) is stable under composition and pullback by Tay,
(resp. T1i) in the first direction, and T1, N Tox is stable under pullback by T1 U Tox in
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the first direction. Moreover, we have

(1.21) Tik #ome ks o) Tak = Tik Hamiat oy - Tog.

See Remark 1.5.3 (3) below for an explicit description of the meaning of (1.21).

(4) For every pair k, k' € K with k # k', and every Cartesian square of the form (1.19) of
the co-category Fun(A! x Al, @) (whose vertices are regarded as squares of C in directions

k. k'), with y — = given by a (1,1,1)-simplex of 5i1’k’k/}D(G,‘J') and z = x given by a
(1,1, 1)-simplex of siBkk }D(C,‘J') (where the obvious restrictions of T are still denoted
by T), we have w € Ty .

Then, for any subset L C K, the inclusion map

64(<{1’2}HK)D(G,‘I) 65‘{1,2}]_11()[:‘(6’7/)

LKk *
L 5{1,2}HK,L - 5{1,2}HK,L

s a categorical equivalence.

We note that unlike the theorems in the last section, Theorem 1.5.1 is symmetric in €; and
Es.

Remark 1.5.2. Let us recall some facts about n-truncated morphisms, n > —2, in an co-category
C.

e A morphism f of € is (—2)-truncated (resp. (—1)-truncated) if and only if f is an equiv-
alence (resp. a monomorphism).

e The set of n-truncated morphisms of € is admissible. Indeed, the set is stable under
pullback by [52, Remark 5.5.6.12]. It follows from the long exact sequence of homotopy
groups that the set is stable under composition. Moreover, given a 2-simplex o of C of
the form (1.3), if r = 0 o d? is n-truncated and p = o o d3 is (n + 1)-truncated, then
q = 0 o d3 is n-truncated.

e Given a morphism f: y — x of € such that the fiber product y x,, y exists, f is (n+ 1)-
truncated if and only if its diagonal y — y X, y is n-truncated ([52, Lemma 5.5.6.15]
assumes that € admits finite limits, but the proof only uses the existence of y X, y).

e In an (n + 1)-truncated category [52, Definition 2.3.4.1], every morphism is n-truncated
by [52, Proposition 2.3.4.18].

Remark 1.5.3. We have the following remarks concerning the conditions in the above theorem.

(1) The conditions of the theorem imply that the sets T}, T;;, T;; and € are all stable under
equivalence. Indeed, the second part of Condition (1) implies that T; and T3 are stable
under equivalence. The second part of Condition (2) implies that & is stable under
equivalence. It follows that T15 and T7, are stable under equivalence. The first part
of Condition (3) implies that T7; and Toy are stable under equivalence. It follows that
T is stable under equivalence. Finally, Condition (4) implies that T is stable under
equivalence.

(2) The first part of Condition (1) is satisfied if morphisms in T; admits pullback in € by
morphisms in Ts.

(3) The left hand side of (1.21) clearly contains the right hand side. Since Ty, and Tay are
stable under equivalence, the meaning of the equality is as follows. Consider a square of
the form (1.19) in the oo-category Fun(Al, €) (whose vertices are regarded as edges of
C in direction k), such that y — x,w — 2z € Ty, and z — x,w — y € Tog. If it has a
decomposition of the form (1.20) with w — w’ in € e Tk, then w — w’ is in Ty N Toy.

(4) Suppose that we have Tj;; = T; «&™ T, for all j,j' € {1,2}[[ K with j # j’. Then
the identity (1.21) holds automatically, by (the dual of) [52, Lemma 4.4.2.1]. Moreover,
the first part of Condition (3) implies Condition (4). To see this, consider a square o
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as in Condition (4). Applying Lemma 1.3.22 to the corresponding cube (whose vertices
are edges of € in direction k', say), we get w € €1 *&'* C;. Applying the first part of
Condition (3) to the images of o under the maps Fun(A! x Al, €) — Fun(A!, €) induced
by d} x id, di x id, we get w € €1 e Tyr. Similarly, we have w € Ty, xe C;.

(5) Suppose that we have T;; = T; «&™ T for all j,5' € {1,2}[[ K with j # j/, and
moreover that Ty is stable under pullback by either T; or T for each k € K. Then,
by Remark 1.3.23, Conditions (1) and (2) imply Condition (3), which in turn implies
Condition (4).

Combining Theorem 1.5.1 with Theorem 1.4.16 and Theorem 1.4.20, we obtain the following.

Theorem 1.5.4. Let C be an co-category and let K be a finite set. We are given a ({0,1,2} [[ K)-
marked co-category (C, Eo, €1, Ea, {€k trex) such that

(1) €1,E2 C Ep; &g is stable under composition. Moreover, for every morphism f in &g,
there exists a 2-simplex of C of the form

Yy
A
f
z——————>x
with p € €1 and q € 4.

(2) Ewery morphism f in €1 NEy is n-truncated for some integer n = —2 (which may depend
on f).

(3) & is stable under pullback by &1 for every k € K.

(4) Edges in &1 admit pullbacks in C by edges in & for allk € K.

(5) E1%ea = &1 *21082 &a. Moreover, &1 (resp. €3) is stable under composition and pullback
b by & for allk € K and by &5 (resp. €1); €1 N E2 is stable under pullback by €1 U Es.

(6) Ce, admits pullbacks and pullbacks are preserved by the functor Cg¢, — Cg,.

Then, for every subset L C K, the natural map

g: 6?1,2}HK7LG%a1it52:{Sk}kek - 6?0}HK’L€%irf{gk}keK
is a categorical equivalence (see Definition 1.8.16 for the notation).
Remark 1.5.5. If € admits pullbacks and €1, €5 are admissible, then Conditions (4), (5), and (6)
of Theorem 1.5.4 hold. Moreover, in this case, Condition (1) of Theorem 1.5.4 implies that &y is

admissible by Remark 1.3.19. Indeed, &g is clearly stable under pullback, and given a 2-simplex
as in Condition (1), we have a diagram

dq
z Z Xy 2 Y

Nk

ZXg 2 >Y Xz Y,

where the square is a pullback by Lemma 1.5.6 below, so that the diagonal dy of f belongs to
Eo.

Lemma 1.5.6. Let C be an oco-category admitting pullbacks. Consider two 2-simplices of C
sharing an edge as depicted by the diagram

z*>33’<7y

N
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Then we have a pullback square

Y Xgr 2 ———> 1’

Y Xz —>=1' Xp !,
where the right vertical arrow is the diagonal of ¥’ — x.

Proof. Indeed, we have a diagram

Y Xyt 2 Yy

~
~N
~N
~N
EN

YXp2———+ - —>=yxp ' ——>y

N

X

z

where the front face of the cube and the squares on the back page are pullbacks. It follows that
the other two faces of the cube containing x’ are pullbacks. Therefore, all the faces of the cube
are pullbacks. O

Proof of Theorem 1.5.4. Denote by (C,T) the ({1,2}]] K)-tiled simplicial set as in Theorem
1.4.16. Then the map g factorizes as
31y O eutec 0Ty 0 ONCT) B o 1€ ey

By Theorem 1.5.1 applied to the inclusion (C, (€1, &2, {Ek}rer)®") C (C,T) (see Definition
1.3.16 for the notation) and & = &; N o, the inclusion ¢ is a categorical equivalence. Indeed,
by Condition (3) of Theorem 1.5.4 and Remark 1.5.3 (5), it suffices to check Conditions (1)
and (2) of Theorem 1.5.1. The first part of Condition (2) of Theorem 1.5.1 is Condition (2)
of Theorem 1.5.4. Condition (1) and the second part of Condition (2) of Theorem 1.5.1 follow
from Condition (5) of Theorem 1.5.4. To show that f is a categorical equivalence as well, we use
Theorem 1.4.16 (with & = 1). Conditions (1) and (2) of Theorem 1.4.16 follow from Condition
(1) of Theorem 1.5.4. Condition (3) of Theorem 1.4.16 follows from Condition (5) of Theorem
1.5.4. Conditions (4) and (5) of Theorem 1.4.16 are Conditions (3) and (4) of Theorem 1.5.4,
respectively. It remains to check that prté e ¢,(7) is weakly contractible for every simplex 7
of Ce¢,, which follows from Theorem 1.4.20 applied to (C¢,, €1, E2). Conditions (1), (2), (3) of
Theorem 1.4.20 follow from Conditions (5), (6), (1) of Theorem 1.5.4, respectively. O

The rest of this section is devoted to the proof of Theorem 1.5.1. A key ingredient in the proof
is an analogue of the diagram (1.20) for decompositions of simplices of higher dimensions. Such
decompositions are naturally encoded by certain lattices. Let us review some basic terminology.

Definition 1.5.7 (Lattice). By a lattice we mean a nonempty partially ordered set admitting
products (namely, infima) and coproducts (namely, suprema) of pairs of elements, or equivalently,
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admitting finite nonempty products and coproducts. In a lattice, we denote products by A and
coproducts by V. A lattice P is said to be distributive if p A (gV r) = (pAq)V (p Ar) for all
p,q,r € P, or equivalently, pV (¢ Ar) = (pV q) A(pVr) for all p,q,r € P [15, Lemma 4.3].

A map between lattices preserving finite nonempty products and coproducts is called a mor-
phism of lattices. A morphism of lattices necessarily preserves order.

Note that a finite lattice admits arbitrary products and coproducts.

Definition 1.5.8 (Sublattice). A nonempty subset of a lattice is called a sublattice if it is stable
under finite nonempty products and coproducts. We endow the subset with the induced lattice
structure.

Subsets of a lattice P of the forms P,/, P/, P,//q for p < q in P are necessarily sublattices
of P.

Definition 1.5.9 (Up-set lattice). Let P be a partially ordered set. A subset @ of P is called
an up-set if ¢ € @ and p > ¢ with p € P imply p € Q. We order the set U(P) of up-sets
of P by inverse inclusion: @ < Q' if and only if @ O @'. Then U(P) becomes a distributive
lattice admitting arbitrary products and coproducts. In fact, we have Q V Q' = Q N Q" and
QANQ =QUQ'. We call U(P) the up-set lattice of P.

We let ¢: P — U(P) denote the map carrying p to P,,, which is a fully faithful functor
(namely, an order embedding) since we have chosen the inverse inclusion order on U(P). Note
that ¢ preserves coproducts whenever they exist in P. On the other hand, ¢’ does not preserve
the product of any family of elements, unless the family admits a minimum.

Remark 1.5.10. Although we do not need it in the sequel, let us recall the correspondence between
finite partially ordered sets and finite distributive lattices [15, Chapter 5] via up-set lattices. An
element p of a lattice L is said to be product-irreducible if p is not a final object (namely,
maximum) of L and p = a A b implies p = a or p = b for all a,b € L. We let J(L) C L denote
the subset of product-irreducible elements of L. The map ¢ factorizes to give an embedding
P — J(U(P)), which is an isomorphism if P is finite. The map nz: L — U(I(L)) carrying z
to J(L),, is a morphism of lattices preserving initial and final objects. Birkhoff’s representation
theorem states that 7y, is an isomorphism for any finite distributive lattice L.

We will need the following properties of up-set lattices.

Remark 1.5.11. We have an isomorphism U(P") ~ U(P)> carrying @ # 0 to @ N P and carrying
{0 to the cone point of U(P)>. In particular, U(P) can be identified with the sublattice of U(P>)
spanned by nonempty up-sets of P”, or equivalently, up-sets of P> that contain the cone point.

Remark 1.5.12. For Q € U(P), we have Q@ C P and <”(Q) C ¢ (P) C U(P). Moreover, we
have ¢”(P)g, = ¢¥(Q). Thus a diagram F: N(U(P)) — € in an co-category C is a right Kan
extension along N(¢¥') if and only if for every @ € U(P), the restriction of F to N(¢F(Q))?
exhibits F(Q) as the limit of F' | N(¢¥(Q)). Note that when Q € ¢”(P), the last condition is
automatic. To alleviate notation, we will write ¢* for N(¢%).

Definition 1.5.13. Let P and P’ be partially ordered sets and let f: P’ — P be an order-
preserving map. The map U : U(P) — U(P’) carrying Q to f~(Q) is a morphism of lattices
preserving products and coproducts. The functor U/ admits a right adjoint Uy : UW(P') — U(P)
carrying an up-set @' of P’ to the up-set of P generated by f(Q’). In other words, Us(Q') =
quQ, Pyg)/- The functor Uy preserves products.

We will need the following properties of the functor Uy.
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Remark 1.5.14. The following diagram commutes:

P’

P == U(P")

P> U(P).

Remark 1.5.15. Suppose that P’ admits nonempty coproducts and f preserves such coproducts.
For ' € U(P’), the map f restricts to a map Q' — Us(Q'). We claim that the induced map
N(Q)? — N(Uz(Q'))°P is cofinal. Indeed, for every @ € Us(Q'), the partially ordered set
Q' XU, (Q") Us(Q") g is nonempty and admits nonempty coproducts, hence admits a final object.
Thus N(Q') xxqu, () N(Us(Q')) ) is weakly contractible and we apply the criterion of cofinality
[52, Theorem 4.1.3.1].

In this case, if F': N(U(P)) — € is aright Kan extension along ¢, then FoN(Uz): N(U(P')) —
€ is a right Kan extension along <. Indeed, by Remark 1.5.12, it suffices to check that for every
Q' € U(P') and every limit diagram N(U(Q'))? — €, the induced map N(Q')? — € is a limit
diagram, which follows from the above cofinality by [52, Proposition 4.1.1.8].

Lemma 1.5.16. If P’ admits coproducts indexed by a set I and f: P' — P preserves such
coproducts, then Uy preserves coproducts indexed by I. In particular, if P admits coproducts of
pairs of elements and f preserves such coproducts, then Uy is a morphism of lattices.

Proof. Let Qj, i € I be up-sets of P'. We have (,.; Us(Q;) 2 Us();c; Qi) To show the
inclusion in the other direction, let y € (,c; Uy (Q;). For each i € I, there exists z; € Q] such
that f(x;) <y. Thus f(V,c; %) = V,ep f(2:) <y. This implies y € Uy (), Q) since we have
Vieri € Nies Qi- O
Definition 1.5.17 (Exact square). By an ezact square in a lattice, we mean a square that is
both a pushout square and a pullback square, or, equivalently, a square of the form

TANYy———>=

|

y——zxVuy.
The left vertical arrow is called an exact pullback of the right vertical arrow.

Exact squares in U(P) correspond to pushout squares of sets. The relevance of such squares
is shown by the following lemmas.

Lemma 1.5.18. Every right Kan extension F: N(W(P)) — € along s* carries evact squares to
pullback squares. More generally, for every full subcategory R C U(P) containing s¥(P), every
functor F: N(R) — € that is a right Kan extension of F | N(¢P'(P)) carries exact squares to
pullback squares.

Proof. Let
(1.22) Q Ll Q —— Cf
Q' QN

be an exact square in R. We consider S = ¢¥'(P)U{Q, Q’',QNQ'}, satisfying ¢F'(P) C S C R. By
[52, Proposition 4.3.2.8], F is a right Kan extension of F' | N(S). In particular, the restriction of
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F exhibits F(QUQ') as a limit of F|N(Sguer,/). By Lemma 1.4.17, the map A§ — N(Squqr/)
induced by the square (1.22) is cofinal. Thus by [52, Proposition 4.1.1.8], F carries the square
to a pullback square in C. O

Lemma 1.5.19. Let P be a finite partially ordered set. Every morphism Q — Q' in U(P) is the
composition of a finite sequence of exact pullbacks of the morphisms w® (z): ¢¥'(x) — ¢F'(z)—{z}
forzeQ—Q'.

Proof. We may choose a (finite) sequence of morphisms Q = Qo — -+ = Q. = Q’ such that for
1<i<m, Qi1 = Q;U{x;}, where z; € Q — Q; is a maximal element. For each i, the following
diagram

(

Qz‘—l S ffz)

l lwp(l’i)

Qi —<F(x:) — {4}

is an exact square. Thus the lemma follows. O

The following lattices encode generalizations of the diagram (1.20).

Notation 1.5.20. For n > 0, we let Cart” denote the sublattice of U([n] x [n]) spanned
by nonempty up-sets of [n] x [n] and we let ¢": [n] x [n] — Cart™ denote the map induced
by <X carrying (p,q) to ([n] x [n])(p,q),. For an order-preserving map d: [m] — [n], we
let Cart(d): Cart™ — Cart™ denote the map induced by Ugxq. Put Cart™ := N(Cart") and
Cart(d) := N(Cart(d)). We still write ¢™ for N(¢").

By Remark 1.5.11, we have Cart” ~ U([n] x [n] — {(n,n)}). The definition of Cart™ given
above has the advantage of being functorial with respect to [n]. Every up-set of [n] x [n] has the
form {(p,q) € [n] X [n] | ¢ > a,} for a sequence of integers —1 < ag < ... < a,, < n. Thus the
cardinality of Cart” is (25:"12) -1

Below are the Hasse diagrams of Cart! and Cart?, rotated so that the initial objects are shown
in the upper-left corners. Bullets represent elements in the images of ¢! and ¢2. The dashed

boxes represent Cartal and Cartig (see Construction 1.5.30 (1) below).

(1.23) Lﬁ

The map Cart(d) is a morphism of lattices by Lemma 1.5.16. Moreover, ™ preserves coprod-
ucts and final objects. In particular, ¢"(p, q) = <" (p,0)Vs™(0,q). By Remark 1.5.14, the maps ¢"
for different n are compatible with d in the sense that we have Cart(d)(<™(p, q)) = <" (d(p), d(q))
for all (p,q) € [m] x [m].

By Remark 1.5.12, a diagram F': Cart”™ — C in an oo-category € is a right Kan extension
along ¢™ if and only if for every @@ € Cart™, the restriction of F' to N(¢"(Q))? exhibits F(Q) as
the limit of F'|N(¢"(Q)). By Remark 1.5.15, if F': Cart™ — C is a right Kan extension along ¢,
then F o Cart(d): Cart™ — € is a right Kan extension along ¢".

Definition 1.5.21. Let C, D be oo-categories and let 7: A™ x A™ x D — € be a functor. We
define Kart(7), the simplicial set of Cartesianizations of T, to be the fiber of the restriction map

F‘un(@art” X D, G)RKE E) F\llH(An x A" x @7 G)
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at 7. Here Fun(Cart™ x D, C)grxr C Fun(Cart™ x D, €) is the full subcategory spanned by functors
F': Cart™ x D — C that are right Kan extensions of F'| A™ x A™ x D along ¢" X idp.

Remark 1.5.22. By [52, Proposition 4.3.2.9], res is the composition

Fun(Cart™ x D, C)rxg — K — Fun(A™ x A™ x D, €)
of a trivial Kan fibration with the inclusion of the full subcategory X spanned by functors 7 that
admit right Kan extensions along ¢" X idp. In particular, Kart(7) is a contractible Kan complex
if 7 admits a right Kan extension along ¢" x idp and Kart(7) is empty otherwise.

If € admits pullbacks, then res is a trivial Kan fibration. Indeed, in this case, every diagram
N(Q) — €, where @ € Cart”, admits a limit by Lemma 1.4.22.
The following projection map will play an important role.
Notation 1.5.23. Let n > 0 be an integer. We define a morphism of lattices
7" = (a7, 7y): Cart” — [n] X [n]
to be the composite of the morphism of lattices — V" (n,n): Cart™ — Cart,, ,,, where £"(n,n) =
§"(n,0) As"(0,n) and Cart, , = Cartgn(, )/, and the isomorphism Cart,, ,, > [n] X [n] carrying

n,n —

£"(n,m)(p,q)) = <" (p,n) A< (n,q) to (p,q). We still write 7" for N(7").

Note that ¢" is a left adjoint of 7™, hence a section of ™. We have the following characteri-
zations of #™: for Q € Cart™, we have

s"(r(@Q),n) = Q V™ (0,n),
s"(n, 13 (Q)) = Q V" (n,0),
(@) = ( min, . min o).

The last equation implies that for every order-preserving map d: [m] — [n], we have 7" o
Cart(d) = (d x d) o ™. Indeed, for @ € Cart™, we have

7 (Cart(d)(Q) = ((p{r;)ng o), min d<q>) — (dx d)(="(Q)).

Lemma 1.5.24. Let C be an oco-category and F: A" x A" — € a diagram. The following
conditions are equivalent:

(1) F is obtained from a map of bisimplicial sets A™"™ — G%alrtel

(2) F is a right Kan extension of F'|N(™(n,n)).

(8) Fonr™: Cart™ — C is a right Kan extension along ™.

Proof. By Lemma 1.4.17, the map A2 — N(£"(n, n)(p,q),)°" induced by the square

(p,q) — (p,n)

L

(TL, Q) - (TL, TL)

is cofinal. Thus, by [52, Proposition 4.1.1.8], (2) is equivalent to the condition that F' carries the
above square to a pullback. This condition is a special case of (1), and is equivalent to (1) by
52, Lemma 4.4.2.1].

Next we show that (2) implies (3). Assume that F'o7™: Cart™ — € is a right Kan extension
along ¢". Then F(p,q) = F(7"(<"(p,n) As"(n,q))) is a limit of F' | N(<"(p,n) A <"(n,q)) by
Remark 1.5.12. This implies that F is a right Kan extension of F | N(£"(n,n)).
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Finally we show that (3) implies (2). Assume that F is a right Kan extension of F|N(£"(n,n)).
Then, for every @ € Cart", the restriction F'|N(Q) is a right Kan extension of F'|N(QVE™(n,n)).
Indeed, for any (p, q) € Q, we have (QVE™(n,n))p.q); = £"(17,7)(p.q)/- Moreover, the restriction
of F' exhibits F'(7"(Q)) as the limit of F'| Q V £"(n,n) since £"(n,n) ), = Q V" (n,n).
It follows that the restriction of F o 7™ exhibits (F o 7")(Q) as a limit of F o 7™ | N(¢"(Q)).
Therefore, F'on™: Cart™ — C is a right Kan extension along ¢"™ by Remark 1.5.12. O

We now introduce a crucial 2-marking on Cart”.

Notation 1.5.25. Let n > 0 be an integer. We define a 2-marking F = (F1,F3) on Cart™ as
follows. For i = 1,2, we let F; denote the set of edges of €2A™™, so that &5, A™" ~ (A" x
A" F1,T,). We define F; = (7")~'(JF;) for i = 1,2. Graphically, F; (resp. F2) consists of
edges whose image under 7™ are vertical (resp. horizontal). Recall that F induces a 2-tiling Fer*
defined by F§3™ = Fy ", Fo.

For an order-preserving map d: [m] — [n], the map Cart(d) induces a map (Cart™,F) —
(Cart™, F) of 2-marked co-categories, and a map (Cart™, F) — (Cart™, Fr) of 2-tiled oo-
categories.

Construction 1.5.26. Consider a ({1,2} ][] K)-tiled oco-category (€, T) and a subset L C K.
For brevity, we write I for {1,2} [] K. We consider the following two simplicial sets

Y™(T) = €l Map(62* (Cart”, F) K ATFFK 510 TY),
Z(T) = el Map(627(Cart™, ) ) ATHIFER 510 (@ 7)),
We have a natural commutative diagram

Fun(&;&feart” X A[Z}k]keK s G) é Fun(eartn % A[{fk]ke}(’ e)

| T

Y"(T)— Fun(5362* (Cart™, F) x AlMlvex @) B

| |

Z"(T) > Fun(§3827 (Cart™, Fort) x Al*eex e),

where
e The vertical arrows are induced by the inclusions
625 (Cart™, Fot) C §2* (Cart™, F) C 62Cart™;
e f"is induced by the adjunction 6362Cart™ — Cart™;
e g™ and h™ are compositions of f™ and the vertical arrows;
e In the inclusion on the second row we have used the isomorphism

el Map(62+ (Cart™, F) K A’LL’“‘%K, 61@) ~ Fun(8362 (Cart™, F) x A[Lnk]’””ek, C)
in Remark 1.3.6 and similarly for the inclusion on the third row.
Moreover, we have a commutative diagram

yo(T) L Map(3502+ (Cart™, F) x Al g7 | 515(e, 7))

2™(T) i

Z™(T) — Map(53027 (Cart™, Fert) x Allier 57 510(€, 7)),
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where the vertical arrows are induced by the inclusion
625 (Cart™, Fo4t) C 62+ (Cart™, )

and the horizontal arrows are induced by ¢ in Remark 1.3.6. In the above notation, we have
kept the datum 7 as we will now let it vary.

Lemma 1.5.27. Assume that we are in the situation of Theorem 1.5.1. Let & C & be the
subset of i-truncated edges, and let T* be the ({1,2} ][ K)-tiling between T and T’ determined by
T, =T *%1 Ts. Then, for every map T: AZ’"’”’““CEK — 5£{1’2}HK)D(G,Ti), the simplicial set
Kart(r) is a contractible Kan complex and the restriction of the map g™ (resp. h™) to Kart(r) C
Fun(Cart™ x A[L"k}’“e’(,(‘f) has image contained in Y™ (T?) (resp. Z™(T'~1) for i > —1). Here
Kart(r) is the simplicial set of Cartesianizations of T (where T is regarded as a functor A™ x
A" x AlPHkex @) in Definition 1.5.21.

In particular, we have induced maps

g(7) = y™(T') o g": Kart(7)
— Map(6302* (Cart™, ) x Alnlere g7, o s(HHHOT @ i),

h(7) = 2"(T"" 1) o h™: Kart(r)
— Map(83627 (Cart™, 5ert) x Alwleex 57, 1 gD @ ginty),

Proof. Consider an equivalence e in the co-category
(1.24) Fun (8362 (Cart™, F) x Alrleern e

with one vertex in Y™ (T%). By Remark 1.5.3 (1), we know that the other vertex is also in Y™ (T%).
Moreover, we have 72«31 T, C T4 for o € {2} [[ K. It follows that e is in Y™ (T?). Thus,
for any connected Kan complex S contained in (1.24), either Y™*(T9) NS = () or § C Y"(T%).
The same holds for Z™(T?~1). As Kart(7) is either empty or a contractible Kan complex, its
images in oo-categories are contained in connected Kan complexes. Therefore, it suffices to find
one vertex F of Kart(r) satisfying ¢"(F) € Y™(T%) and h"(F) € Z™(T71).

For clarity, let G': Al»7mklkex 5 @ be the functor corresponding to 7 (we have till now denoted
G by 7). Note that G underlies a map of ({1,2} ][] K)-tiled simplicial sets 5}‘DAZ’n’n’“‘kEK —
(€,T%). We let G, denote the set of edges of e{IAZ’"’”’“lkEK. Then there are isomorphisms

* n,n,ng|k€EK ~ * n,n,nk|k€EK
omAL ~Wor, Ap ;

5y AT RER o (Almmmdeex gy

We define an I-marked simplicial set (Cart™ x A[L"’“]’“EK7 {Gatacr) by Ga = (¢" x id)~'G,. The
goal is to show that G admits a right Kan extension F': Cart™ x A[L”k]"'EK — @ along ¢™ x id such
that F' sends squares in G, * §p to squares in T, 5 for a, 8 € I, # B, and, for i > —1, F sends
squares in Gy *“** Gy to squares in ‘J'"gl.

Let us first show that there exists a right Kan extension F' of G along ¢" x id such that for
each vertex (z,u) of Cart™ x A[L"’“]’“GK, the morphism G(7"(z),u) = F(s" (7" (z)),u) = F(x,u)
is in €. We construct the restriction of F' to Cartl(, 0y ¥ A[LTL’“]’“EK by descending induction on
p. In the case p = n, Cart?n(nﬁo) ; Is contained in the image of ¢"™ and there is nothing to prove.
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For 0 < p<n-—1,and x € Cart" satisfying 7" (z) = (p, ¢), consider the commutative diagram

(1.25) s"(p,q) x S"(p,q')

| | |

"(p+1,9) —=aV"(p+1,¢9) —=<"(p+1,¢),

where ¢’ = min{qy | (p,q0) € x}. The right square is exact. The vertical (resp. horizontal)
arrows are in F; (resp. F2). The horizontal arrows in the left square are in F3 N Fy. By
induction hypothesis, the morphism G(p + 1,q,u) — F(z V <"(p + 1,q),u) is in &, so that
G(p,q,u) = F(x V<" (p+1,q),u) is in T, since T; is stable under composition. Thus, by the
assumption T7 xe To = T *gl T, the pullback F(z V<™ (p+1,q),u) Xa(pt1,9,0) G(p, ¢, u) exists
in €, which provides F(z,u) by the proof of Lemma 1.5.18. The morphism G(p, q,u) — F(z,u)
is the composition

G(p7qau) — G(p + 1a Q7u) XG(p+1,q’,u) G(pa q/7 U) — F(Z‘,’U,)7

where the first arrow is in & by the assumption that G carries G, * Gy into T, =T, *g Ty, and
the second arrow is in €% by the assumption that € is stable under pullback by T;.

We claim that F sends G; to T1, Go to To, and G; N G to €L Let e: (z,u) — (y,u) be an
edge in §1 U Go, where x — y in F; U Fs and u is a vertex of Alnkleerx . We show by induction
on #x that F(e) € Ty for e € Gy, F(e) € Ty for e € Go, and F(e) € € for € §1 N G2. By Lemma
1.5.19, any morphism x — y in Cart™ is a composition of a finite sequences of morphisms of the
following classes:

(1) An exact pullback of w™(p,n): ¢"(p,n) = <" (p+ 1,n) by ¢ € Fy;

(2) An exact pullback of w™(n,q): <" (n,q) — <"(n,q+ 1) by ¢ € Fy;

(3) An exact pullback of w"(p,q): <" (p,q) = <" (p,q) —{(p.q)} by ¢,
where we have (p,q) € [n—1] x[n—1], and ¢: 2’ — y’ satisfies #2' < #z. If e € G (resp. e € Ga),
then class (2) (resp. (1)) does not appear. Since T, T2 and & are stable under composition, we
may assume that  — y is in one of the three classes. In class (1), w™(p,n) is in ¢"(F1), and
we conclude by Lemma 1.5.18 and the assumption that T is stable under pullback by T2. In
class (2), w™(n,q) is in ¢"(F2), and we conclude by Lemma 1.5.18 and the assumption that T is
stable under pullback by 7. In class (3), ¢ is a composition of an edge in F; and an edge in Fy
both satisfying the induction hypothesis, and we have a diagram

s"(p,q)

w

"1 q) — {9} ——=<"(p,g + 1)

l |

"(p+1l,9) ———=<"(p+1,g+1)

with exact square in Cart”. By Lemma 1.5.18, the morphism F(w"(p, ¢) x id,,) can be identified
with the induced morphism

G(p7 q, u) — G(p + 1; q, u’) XG(erl,qul,u) G(pa q+ la U),

which belongs to &% since G carries 91 * 5_32 into ‘7{2 =T *é T5. We conclude by the assumption
that &! is stable under pullback by T; U J5. This finishes the proof of the claim.

Similarly, applying Condition (3), we see that F' carries §; * i, into T1 and Ga * Gy, into Toy
forall k € K.
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Next we show that F' carries squares in G * G; into Ty for all k,l € K, k # [. Consider
such a square and let € Cart™ be its projection. For z in the image of ¢™, this follows from
the assumption that G carries G * §; to Ty;. For the general case, we proceed by descending
induction on 71 (z). If w(x) = (n,q), then x = ¢"(n,q) is in the image of ¢"™. For n(z) = (p,q)
with p < n, we consider the right square of (1.25). We conclude by Condition (4) and the
induction hypothesis applied to z V ¢"(p + 1, ¢).

Finally we show that F' carries G; * G into T4, and carries G1 %' Gy into Ti5 1. Every square
in F1 *eartn Fo of the form (1.19) has a canonical decomposition

w

AN

YNz ——>y

L

z—>yVz

.

z,

where the vertical (resp. horizontal) arrows are in F; (resp. F2), and oblique arrows are in F3 NF.
Note that F§3' is the set of squares such that w = y A z. Multiplying by id,, and applying F', we
obtain a similar diagram where the inner square is a pullback by Lemma 1.5.18 and the oblique
arrows are in & by the previous claim. Since we have already proved that F carries G; * G into
Ty *e T2, all we need to show is that the induced morphism F(y Az, u) = F(y,u) X p(z,a) F(2,u)
belongs to &°~!. However, by Lemma 1.5.6, this morphism can be identified with the left vertical
arrow of the pullback square

F(yau) X F(z' u) F(Z,’LL) F({L‘I,U)

| |

F(yvu) X F(z,u) F(Z,U) HF('T/’U) X F(z,u) F(ll?l,u),

where for brevity we have written 2’ for y V z, and the right vertical arrow is the diagonal of
F(2',u) — F(x,u) and hence belongs to £~1. The lower horizontal arrow is a composition of
a pullback of a morphism in 77 by a morphism in T3 and a pullback of a morphism in T by a
morphisms in T7. Since €~ is stable under pullback by T; U T5, the left vertical arrow belongs
to €71 as well. O

The functor ¢g" in Construction 1.5.26 is induced by the map
(1.26) 850%T (Cart™, F) — Cart™,

which carries a square in F; xeargn Fo to its diagonal. We now construct a family of sections of
this map.

Construction 1.5.28. Let n > 0 be an integer.
(1) For z < y in Cart" and (p,q) in [n] x [n], we define two elements of Cart;,,,,
Ap(@,y) = () Vp,0) V) Ay, pg(zy) = (s"(0,75(y) Va) V) Ay.
These formulas are increasing in p, ¢, x and y. Moreover, we have the properties

(1.27) Mz, ) = pg (z,2) = 2,



(1.28)
(2)

(1.29)
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and
(A (@) = (7' (y), 73 (2)), 7" (kg (z,y)) = (71 (2), 73 (y)).
We construct a map
" A" = (A" x A™)F x (Cart™)” — (656%F (Cart™, F))°

as follows. For an m-simplex 7 = (11,72, 73): A™ — A™ x A™ x Cart™, we define o™ (1)
to be the map A™ x A™ — Cart™ carrying (a,b) to A2 ) (13(b), m3(a)) for a > b, and
to ufz(a)(Tg(a),Tg(b)) for a < b. By (1.27), the two definitions coincide for ¢ = b. By
(1.28), a™(7) is an m-simplex of §562F(Cart”,F). In particular, a™ carries an edge
(p,q,x) = (p',q',y) of A™ x A™ x Cart™ to the square

& —— iy (2,y)

]

Ay (@, y) ———y
in F1 #eartn Fo. By (1.27), o™ carries marked edges of A™ to degenerate edges. The
composition
A" 25 (526%F (Cart™, F))? — (Cart™)?,

where the second map is (1.26), is the projection.

Remark 1.5.29. For an order-preserving map d: [m] — [n], we have identities

Cart(d) (A (2,9)) = A, (Cart(d)(z), Cart(d)(y)),
Cart(d)(ug' (2,y)) = g (Cart(d)(z), Cart(d)(y)).

Thus the maps o™ for different n are compatible with Cart(d) in the obvious sense.

Next we define a restriction of o”, taking values in 65625 (Cart™, Feart),

Construction 1.5.30. Let n > 0 be an integer.

(1)

We define order-preserving maps
&M n": [n] x [n] — Cart™
by
£'(p,q) = <"(p,0) A<™(0,9),  1"(p,q) =<"(p,n) A<"(n, q).
We have £"(p,q) < <s™(p,q) < n™(p,q). We define a sublattice of Cart™ by

Carty, , = Cartén, g)//mn(pg)

and we put @) = N(Cart,, ,). We put
H" = U EEZ,q C Cart"™.

0<p,q<n
Note that n" induces an isomorphism of lattices [n] x [n] ~ Cart, ,, = Cart{n(, ),

via which 7™: Cart” — [n] x [n] can be identified with the morphism of lattices — Vv
§"(n,n): Cart” — Carty, ,,.
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(2) We define a marked simplicial subset B™ of A™ by
B" = | N(Iy)* x (Cart], )" € (A™ x A™)f x (@")" C A",
Ty

Here 2 and y run over elements of Cart™ and I, C [n]| x [n] denote the full subcategory
spanned by pairs (p, q) satisfying

(1.30) " (pq) Sz <y <n"(p9)
or, equivalently, satisfying Cart” Iy © By - We note that n™ is a right adjoint of 7"
y < n"(p,q) if and only if 7" (y) < (p, q).

We refer the reader to (1.23) for graphic depictions of Cart,, , for some small values of n, p, .

Remark 1.5.31. Let d: [m] — [n] be an order-preserving map. For 0 < p, ¢ < m, we have

Cart(d)(£™ (p, q)) = <" (d(p), d(0)) A <"(d(0), d(q)) = £"(d(p), d(q)),
Cart(d)(n™ (p, q)) = <" (d(p), d(m)) A <" (d(m),d(q)) < n"(d(p),d(q))-

m

Thus Cart(d) induces morphisms of lattices Cart,’,

Bﬂg(p)7d(q) and B™ — B".
Lemma 1.5.32. The map a" induces a map

B™: B™ — (03627 (Cart™, o)),

— Carty,) (g and hence maps B!, —

Proof. Tt suffices to show that for every m-simplex 7 of the underlying simplicial set of B™, the
diagram a™(7): A™ x A™ — Cart™ carries the square spanned by the vertices (a,b), (a + 1,b),
(a,b+1), (a+1,b+ 1) to a pullback. For a = b, the assertion amounts to saying that for every
edge (p,q,2) < (p',¢,y) of B™, the square (1.29) is a pullback. We have

Ap (@, y) A g (w,y) = (€ (7" (y) V (p, @) V ) Ay,

which equals by the assumption £"(p, q) < x. For a > b, the assertion amounts to saying that
111 11

for every 3-simplex (p,q,2) < (o', ) < (04", 2) < (", 4", w) of B", the square

A (@, 2) ——= A (y, 2)

L

)‘;L (Jf, w) - )‘Z’ (y7 ’LU)

is a pullback. This is clear since A\j(z,2) = (<"(p,0) V o) A 2 by the assumption 7 (z) < p and
similarly for the other vertices of the squares. The case a < b is similar, with A} replaced by
Py - O

Remark 1.5.33. The proof shows in fact that o™ carries the the simplicial subset S C A™ x
A™ x Qart™ spanned by those edges (p,q,z) — (p',¢,y) satisfying (1.30) (with no restrictions
on (p',q')) into 65625 (Cart™, F°*). Note that S is bigger than the underlying simplicial set of
B"™ for n > 1.

Lemma 1.5.34. The inclusion B™ C A" is a trivial cofibration in the category SetX for the
Cartesian model structure.

Proof. Choose an exhaustion of H"™ by a sequence of simplicial subsets

)=K°CK'C...Cc KN =@"
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such that each K%, 1 < i < N is obtained from K*~! by adjoining a single nondegenerate simplex
o': Al — K' This induces inclusions

B":LOQLlg-ugLN:(A"xA”)”x(EE")b,

where L' = B"U((A™ x A™)f x (K%)"). By Lemma 1.6.8, (F3")” C (Cart™)” is a trivial cofibration
in Set}, so that (A" x A")¥ x (B")” C A™ is a trivial cofibration in Set{ by [52, Corollary 3.1.4.3).
Therefore, it suffices to show that the inclusion L*~! C L? is a trivial cofibration in SetX for all
1 < i < N. However, this inclusion is a pushout of the map

(A™ x A™)F x (9Ak)? 11 N(Ly)* x (AL)° = (A" x A™)E x (AL,
N(Ip,y)Ex(8AN)?

where x = 0(0), y = o?(l;). By the assumption that o is a simplex of B", the partially ordered
set I, is nonempty, and admits an initial object 7" (y). Thus the inclusion N(/, ) € A™ x A™ is
anodyne. It follows that the inclusion N(I,,)* C (A™ x A™)* is a trivial cofibration in Set} (by
Remark 1.3.11), and so is its smash product with (9A!)” C (Al)* by [52, Corollary 3.1.4.3]. O

Proof of Theorem 1.5.1. We adopt the notation of Lemma 1.5.27. By the first part of Condition
(2), we have € =J;5 , &, T =U,;5 , 7T, and

. 1,2}1K)0
Weo = 051 gy 0025 @, 7) = | wi,
i>—2
(SSLQ}HK)D(G,(.Ti).

where W; = 5?1’2}HK’L

T2 = 7. Thus, the map ¢ in question is the transfinite composition of inclusions

Since €72 is the set of equivalences of G, we have

Wo=>W_ 1= =>W = = W,.

Since the Joyal model structure on Seta is combinatorial, the trivial cofibrations form a weakly
saturated class [52, Definition A.1.2.2]. Thus it suffices to show that each inclusion W_o — W;
is a categorical equivalence for every integer ¢ > —1. By Lemma 1.1.9 and induction, it suffices
to show that for every i > —1 and every commutative diagram

W,Q ! Wi,1 Y Fun(Al,D)

W; —%— Fun(dA!, D)

where f and f’ are inclusions and p is induced by the inclusion A! C Al, there exists a map
u: W; — Fun(A!, D) satisfying p o u = w such that w o f o f/ and v o f’ are homotopic over
Fun(9A!, D). The proof is mostly parallel to the proof of Theorem 1.4.14.

Let o be an n-simplex of W;, corresponding to a map

T Az,n,nHkEK %5£{1’2}HK)D(6,{J{“)7
where niy = n. We consider the maps
w,g(7): Kart(r) — Fun(6562F (Cart™, F) x Allrex Fun(9Al, D)),
v h(7): Kart(r) — Fun(55025 (Cart™, Fort) x Alnelrex Fun(Al D)),

compositions of the maps g(7) and h(7) defined after the statement of Lemma 1.5.27 and the
maps induced by w and v, respectively. Since Kart(7) is a contractible Kan complex, the maps
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w,g(7) and v, h(7) factorize through
w,g(7): Kart(r) — Map?((DA)° x (6362 (Cart™, F))° x (Alwlrex)> iy,
v h(1): Kart(r) — Map? ((AH? x (63625 (Cart™, F4t))" x (Alnelrer)> phy
respectively. Composing with 5™ and a”, respectively, we obtain maps
Y(7): Kart(r) — Map? (DA x A™ x (Alrelex)> phy
o(7): Kart(t) — Map®((A!)’ x B x (Alrlkexy> pi),
Consider the commutative diagram

(1.31) N(o) Kart(r)

h

resi

Map?((A!)? x A" x (Alrslkex)? Dh) Map?(H x (Almxlrer)o D)

Map®((QAL)? x A™ x (Alnslsex)? Db)

resz

Map((A")" x (A")", DF) Map?((9A")" x (A")", DF).

In the above diagram,
e res; is induce by
jrH=(A xB" J] (A" x A" < (A')’ x A™;
(DALY x Bn
e 1 is the amalgamation of ¢(7) and 9 (7);

e N(o) is defined so that the upper square is a pullback square;
e the two maps ress are both induced by the composite embedding

A" diag A" x A" x A" x A" x A[”k]keK

idan xan X¢" Xid [n,]
AlMkIkEK n n n Nl .
A" x A" x Cart™ x Alrwlkex.

e the unmarked arrows in the lower square are obvious restrictions.

By Lemma 1.5.34 and [52, Corollary 3.1.4.3], the map j x id(Alnklxe s 18 a trivial cofibration in
SetX and consequently res; is a trivial Kan fibration. Thus N(o) is a contractible Kan complex.

We let ®(c): N(o) — Map*((A™)?, Fun(A!, D)?) denote the composition of the vertical arrows
in the first column of (1.31). This construction is functorial in o, giving rise to a morphism
®: N — Map[W;, Fun(A!, D)] in (Seta)@/w:)™ . The composition of the vertical arrows in the
second column of (1.31) is constant of value w(c). Thus Map[W;,p] o ® factors through the
morphism A?A/W_)Op corresponding to w via Remark 1.2.7.

Let ¢’ be an n-simplex of W_5 corresponding to a map

p Az,n,nk\kGK —)5£{1’2}HK)D(G,{I_2).

The composition

Cart™ x Alrlees TR0 An o An o Alridier Ty e
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is a vertex of Kart(7') by Lemma 1.5.24 and the equality T, = T *&* T, This vertex, together
with the composition
A" x A" x Cart™ x AlMklkex _y Gart™ x Alnklrex

A AR s AT Almlrer —y Fun (Al D),

where the first map is the projection and the last map corresponds to the composition

Amnni|k€K r_’>Op{Ll,2}HK5£{1,2}uK)D(G77_2) vof! 51172}HK Fun(Al,D),

provides a vertex of N(f(f’(0”))), whose image under ®(f(f'(¢"))) is v(f'(¢")). This construction
is functorial in ¢’, giving rise to v € T'((f o f')*N)g satisfying (f o f')*® ov = v o f’. Applying
Proposition 1.2.15 to @, the map f o f’, and the global section v, we obtain a map u: W; —
Fun(A!, D) satisfying p o u = w such that wo f o f/ and v o f' are homotopic over Fun(9A!, D),
as desired. n

Remark 1.5.35. As a special case of Theorem 1.5.1, the inclusion
63625 (Cart™, Fo4t) C 6502+ (Cart™, F)

is a categorical equivalence. If we have a direct proof of this special case, Construction 1.5.28
through Lemma 1.5.34 are not necessary and the proof of Theorem 1.5.1 can be achieved with
(1) and ¢(7) replaced by ¢g(7) and h(7), respectively.

1.6. Some trivial cofibrations. In this section, we prove that certain inclusions of simplicial

sets defined in combinatorial manners are inner anodyne or categorical equivalences. In particu-

lar, they are trivial cofibrations in Seta for the Joyal model structure [52, Theorem 2.2.5.1]. Only

Lemma 1.6.7 and Lemma 1.6.8 are used in previous sections, namely, in 1.4 and 1.5, respectively.
We let * denote joins of categories and simplicial sets [52, §1.2.8].

Lemma 1.6.1. Let Ay C A, By C B, Cy C C be inclusions of simplicial sets. If Ag C A is right
anodyne and Cy C C is left anodyne [52, Definition 2.0.0.3], then the induced inclusion

AxByxC H AgxB*xCy CAxB*xC
Ag*xBoxCyo

is inner anodyne.
Proof. Consider the commutative diagram of inclusions with pushout squares

A()*B()*CO A()*B*C()

| | :

A*Bo*COHA*Bo*COHAU*BMCOAO*B*CO—>A*B*CU

| f, |

Ax By C —— Ax By * C L4, pyec, Ao * B+ Co——= A By ClL,pyuc, A% BxCo——= Ax BC.

By [52, Lemma 2.1.2.3], f is inner anodyne since Ay C A is right anodyne; g is inner anodyne
since Cy C C is left anodyne. It follows that g o f’ is inner anodyne. O

Lemma 1.6.2. Let S be a partially ordered set and let @ = [2] C S, R= S5 — {1} C S be full
inclusions. Assume that 0 is a final object of Ry and 2 is an initial object of Ry;. Then the
inclusion N(Q) UN(R) C N(S) is inner anodyne.
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Proof. Consider the commutative diagram of inclusions

N(Q@NR) N(Q)

| T

f
N(R/l * Rl/) —_— N(R/l *Rl/) HN({O}*{2}) N([Q]) e N(R/1 * {1} *Rl/)

| |

N(R) N(R) UN(Q) = N(S)

in which the square on the left are clearly pushouts. Note that for any simplex o of N(S), if ¢
is not a simplex of N(R), then 1 is a vertex of o, so that o is a simplex of N(R/; x {1} x Ry,).
Thus the lower outer square is a pushout. It follows that g is a pushout of f. By assumption and
[52, Lemma 4.2.3.6], N({0}) € N(R/;) is right anodyne and N({2}) € N(R,,) is left anodyne. It
follows that f is inner anodyne by Lemma 1.6.1. Therefore, g is inner anodyne. U

Remark 1.6.3. Let P C @ and P C R be full inclusions of partially ordered sets. The pushout
S = QI[p R in the category of partially ordered sets admits the following description. The
underlying set of S is the set-theoretic pushout. The partial order on S is uniquely characterized
by the following properties:

(1) @ € S and R C S are full inclusions; and
(2) for g € Q, r € R, we have ¢ < r (resp. ¢ = r) if and only if there exists p € P satisfying
q<p<7(resp.g=p=>r).

Lemma 1.6.4. Let P C Q and P C R be full inclusions of partially ordered sets and S = Q[]p R
the pushout in the category of partially ordered sets. Suppose that the following conditions are
satisfied:

(1) @ admits pushouts and pushouts are preserved by the inclusion @ C S.
(2) Q — P is finite.
(3) P is an up-set of Q, that is, a subset such that p € P and q = p with ¢ € Q imply q € P.

Then the inclusion N(Q) UN(R) C N(S) is inner anodyne.

Proof. We proceed by induction on n = #(Q — P). For n = 0, we have R = S and the assertion
is trivial. For n =1, put @ — P := {¢}. Then Condition (3) means that ¢ is a minimal element
of @, hence of S. Note that N(R) UN(S,,) = N(S). Indeed, for any simplex o of N(S), if o is
a simplex of N(R), then ¢ is a vertex of o, so that ¢ is a simplex of N(S,,). Thus the inclusion
N(Q) UN(R) € N(S) is a pushout of the inclusion N(Q,,) UN(R,,) € N(S;/). The latter is

isomorphic to the inclusion

(1.32) N(P)* JT N(R) S N(Ry)) .
N(Pgy/)

By Condition (1), for every r € R/, the partially ordered set P,,,, is filtered. Indeed, for
p,p’ € Py/r, the pushout p V, p’ is a common upper bound in P, /.. Thus N(P,, ) is weakly
contractible by [52, Theorem 5.3.1.13, Lemma 5.3.1.18]. It follows that N(P,,)? C N(R,/)°" is
cofinal by [52, Theorem 4.1.3.1], thus right anodyne by [52, Proposition 4.1.1.3(4)]. Therefore,
(1.32) is inner anodyne by [52, Lemma 2.1.2.3].

For n > 2, we choose a minimal element ¢ of @ — P. Then Condition (3) implies that ¢ is a
minimal element of @, hence of S. Put S" :=5—{¢} D Rand Q' := Q — {q} = 5’ N Q. Consider
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the diagram of inclusions with pushout square

N(Q') UN(R) —L—=N(5")

l |

N(Q) UN(R) — N(Q) UN(S") —L=N(S).

By the induction hypothesis applied to the inclusions P C @’ and P C R, we know that f
is inner anodyne. Indeed, we have P = Q' N R and S’ is the pushout Q' [, R in the category
of partially ordered set, by the description in Remark 1.6.3. Condition (1) holds since ¢ is a
minimal element of @, the partially ordered set Q' admits pushouts and pushouts are stable
under the inclusion Q' C @, hence under the inclusions Q' C S and Q' C S’; for Condition (2),
we have #(Q' — P) =n — 1; and for Condition (3), P is an up-set of @, hence of Q'

By the induction hypothesis applied to the inclusions @' C @ and Q' C S/, we know that g
is inner anodyne as well. Indeed, we have Q' = Q NS’ and S is the pushout QHQ, S in the
category of partially ordered sets; Condition (1) remains unchanged; for Condition (2), we have
#(Q — Q') = 1; and for Condition (3), @’ is an up-set of ) since ¢ is minimal.

Therefore, the inclusion N(Q) UN(R) C N(S) is inner anodyne. O

Lemma 1.6.5. Let P be a finite partially ordered set admitting pushouts and let pg < ... < ps;
qo < ... < qs be elements of P such that p; < q;—1 for 1 < i < s. Then the inclusion

UNBy. 0 €N (U P, i//qi>

i=0 i=0
is inner anodyne.
Proof. Put P; := P,,//4,- The inclusion can be decomposed as Qo C -+ C @), where

n

Q; :N<U PZ-> u |J N@).
=0

i=j+1

For 1 < j < n, the inclusion @Q;_; € @; is a pushout of

(1.33) N (D P,;) UN(Pj) CN (O P,;) .

1=0 i=0

Indeed, for £ > j, we have P, N (ngo PZ-) C P;. It then suffices to check that (1.33) satisfies

the assumptions of Lemma 1.6.4. We denote coproducts in P, , by V. Take x € A = Ui:—é P;
andy € P;. Ifx >y, thenz,y € P, /g, , = Pi-1 N P;. If ¢ <y, then x < 2V p; <y, where
x V p; € P;_i N P; by the assumption that p; < ¢;—1. Thus ngo P; is the pushout A HAij P;
in the category of partially ordered sets, by Remark 1.6.3. Condition (1) of Lemma 1.6.4 follows
from the fact that for x € P;, y € Py, we have xV y € Ppax(;,#}- Condition (2) is clear. For
Condition (3), it suffices to note that AN P; = A, . O

By an interval sublattice of a finite lattice P, we mean a subset of the form P,,,,, where p < ¢
are in P.
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Lemma 1.6.6. Let P be a finite lattice and let pg < ... < ps < qo < ... < gs be elements of P
satisfying U;_, Py /1q = P. Let Q1,...,Qy be interval sublattices of P. Then the inclusion

s t
UN(Ppi//m U QJ ) CSN(P)
i=0 j=1

s a categorical equivalence.

Note that the assumptions imply that py is the minimum of P and ¢; is the maximum of P.

Proof. We proceed by induction on t. Put P; := P,/ and R; := |J;_(N(P;) U Uj_; N(Qx).
We need to show that Ry C N(P) is a categorical equivalence. By Lemma 1.6.5, the inclusion
Ry = U;_oN(P;) C N(P) is inner anodyne, thus a categorical equivalence [52, Lemma 2.2.5.2].
Thus for t = 0 we are done. For ¢t > 1, it suffices to show that the inclusions Ry C --- C Ry are
categorical equivalences. For 1 < j < ¢, the inclusion R;_; C R; is a pushout of

S -
(1.34) UN@Eing)u U (QrNQ;) CN(Q;)

i=0 k=1
by an inclusion. By [52, Lemma A.2.4.3], it suffices to show that (1.34) is a categorical equiv-
alence, which follows from the induction hypothesis. In fact, if we write Q; = P,//4, then
PiNQj = Py yp//qing, and for 0 < i,7 < s such that P; N Qj #0, Py NQ; # 0, we have
PiVP<qrNg O

Lemma 1.6.7. The inclusion (O™ C Cpt™ is inner anodyne.
Proof. We apply Lemma 1.6.5 to the lattice P = [n] x [n], with s = n, p; = (0,7) and ¢; = (i,n).
We have pp < ... <pp =qo < ... < @gn. Thus, the inclusion

n

=" = U (o) €N <U Cpt?o,i)//@,n)) = N(Cpt") = Cpt”
=0

=0

is inner anodyne. O

Lemma 1.6.8. The inclusion Uy, <, By, C Cart” is inner anodyne and the inclusion B" C
Cart™ is a categorical equivalence.

Proof. We apply Lemma 1.6.5 and Lemma 1.6.6 to the lattice P = Cart”, with s = n, p; =
& (i,n), ¢ = n"(i,n), and the @Q,’s given by Cart,, , with 0 < p <n and 0 < ¢ < n. We have
§"(0,n) <... < &(n,n) <n™(0,n) <... <n™(n,n). It remains to show Cart” = |J,_, Cart,,,
For @ € Cart", we let p denote 7}(Q) = Imn(p g)eq@P'. Then we have

"(p,n) <<"(p,0) < Q <<"(p,n) =n"(p,n),
so that @ € Cart,, ,. O

2. MORE PRELIMINARIES ON 00-CATEGORIES

This chapter is a further collection of preliminaries on co-categories. In §2.1, we record some
basic lemmas. In §2.2, we develop a method of taking partial adjoints, namely, taking adjoint
functors along given directions. This will be used to construct the initial enhanced operation
map for schemes. In §2.3, we collect some general facts and constructions related to symmetric
monoidal co-categories.
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2.1. Elementary lemmas. Let us start with the following lemma, which appears as [54, Lemma
2.4.6]. We include a proof for the convenience of the reader.

Lemma 2.1.1. Let C be a nonempty co-category that admits product of two objects. Then the
geometric realization |C| is contractible.

Proof. Fix an object X of € and a functor € — € sending Y to X xY. The projections X xY — X
and X x Y — Y define functors h, h’: A! x € — € such that

e h| A} xe=n"| A0} x @

e h| At} x @ is the constant functor of value X;

o 7/ | AT} x € =ide.
Then |h| and |h/| provide a homotopy between idje| and the constant map of value X. |

The following is a variant of the Adjoint Functor Theorem [52, 5.5.2.9].

Lemma 2.1.2. Let F': € — D be a functor between presentable co-categories. Let hEF': hC — hD
be the functor of (unenriched) homotopy categories.

(1) The functor F has a right adjoint if and only if it preserves pushouts and hF' has a right
adjoint.

(2) The functor F' has a left adjoint if and only if it is accessible and preserves pullbacks and
hF has a left adjoint.

Proof. The necessity follows from [52, 5.2.2.9]. The sufficiency in (1) follows from the fact
that small colimits can be constructed out of pushouts and small coproducts [52, 4.4.2.7] and
preservation of small coproducts can be tested on hF. The sufficiency in (2) follows from dual
statements. g

We will apply the above lemma in the following form.

Lemma 2.1.3. Let F: C — D be a functor between presentable stable co-categories. Let
hF: h€ — hD be the functor of (unenriched) homotopy categories. Then
(1) The functor F admits a right adjoint if and only if hF' is a triangulated functor and
admits a right adjoint.
(2) The functor F admits a left adjoint if F' admits a right adjoint and hF admits a left
adjoint.

Proof. By [53, Lemma 1.2.4.14], a functor G between stable co-categories is exact if and only if

h@ is triangulated. The lemma then follows from Lemma 2.1.2 and [53, Proposition 1.1.4.1]. O

Lemma 2.1.4. Let F': A — B be a left exact functor between Grothendieck Abelian categories
that commutes with small coproducts. Assume that F has finite cohomological dimension. Then
the right derived functor RF: D(A) — D(B) admits a right adjoint.

Proof. By the previous lemma, it suffices to show that h(RF) commutes with small coproducts.
This is standard. See [45, Proposition 14.3.4(ii)]. O

2.2. Partial adjoints. We first recall the notion of adjoints of squares.

Definition 2.2.1. Consider diagrams of co-categories

et p e—%.p

En

e F' P’ e G’ P’
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that commute up to specified equivalences a: F' oV — Uo F and 3: VoG — G' oU. We say
that o is a left adjoint to 7 and 7 is a right adjoint to o, if F is a left adjoint of G, F’ is a left
adjoint of G’, and « is equivalent to the composite transformation

FloV—o3FoVoGoF S FoGoUoF —UoF.

Remark 2.2.2. The diagram 7 has a left adjoint if and only if 7 is left adjointable in the sense of
[52, 7.3.1.2] and [53, Definition 4.7.4.13]. If G and G’ are equivalences, then 7 is left adjointable.
We have analogous notions for ordinary categories. A square 7 of oo-categories is left adjointable
if and only if G and G’ admit left adjoints and the square ht of homotopy categories is left
adjointable. When visualizing a square A! x A! — @€, we adopt the convention that the first
factor of Al x Al is vertical and the second factor is horizontal.

Lemma 2.2.3. Consider a diagram of right Quillen functors

A—%.B

A/LB/

of model categories, that commutes up to a natural equivalence 8: VoG — G'oU and is endowed
with Quillen equivalences (F,G) and (F',G'). Assume that U preserves weak equivalences and
all objects of B’ are cofibrant. Let a be the composite transformation

FloV—osFoVoGoF S FloGolUoF —UoF.

Then for every fibrant-cofibrant object Y of B, the morphism a(Y): (F' o V)(Y) — (U o F)(Y)
s a weak equivalence.

Proof. The square R

hA —H¢ 1B
RU\L iRV
hA’ FC By
of homotopy categories is left adjointable. Let o: LF' o RV — RU o LF be its left adjoint. For
fibrant-cofibrant Y, a(Y") computes o(Y"). O

We apply Lemma 2.2.3 to the straightening functor [52, §3.2.1]. Let p: S’ — S be a map of
simplicial sets, and 7: €’ — € a functor of simplicial categories fitting into a diagram

e[s] L o

C[p]l lﬂ"”
¢

¢[S] ——eop

which is commutative up to a simplicial natural equivalence. By [52, Proposition 3.2.1.4], we
have a diagram

Unl
(SetZ)e _— (Setz)/s

Un™

(SetX)e/ %‘5/- (861}3)/517
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which satisfies the assumptions of Lemma 2.2.3 if ¢ and ¢’ are equivalences of simplicial cate-
gories. In this case, for every fibrant object f: X — S of (Set}) /s, endowed with the Cartesian
model structure, the morphism

(St(‘; op")X — ("o St:g)X

is a pointwise Cartesian equivalence.
Similarly, if g: € — D is a functor of (V-small) categories, then [52, Remark 3.2.5.14] provides
a diagram

» NT(D)
(SetZ)D S (Setz)/N(D)

g*l J{N(g)*
+

Ny (@)
(Set£)¢ —— (SetX)/n(e)

satisfying the assumptions of Lemma 2.2.3. Thus, for every fibrant object Y of (SetX)/N(D),
endowed with the coCartesian model structure, the morphism

Sy (€) = g5y (D)
is a pointwise coCartesian equivalence.

Proposition 2.2.4 (partial adjoint). Consider quadruples (I,J, R, f) where I is a set, J C I,
R is an I-simplicial set and f: 67 R — Cato is a functor, satisfying the following conditions:
(1) For every j € J and every edge e of 6§R, the functor f(e) has a left adjoint.
(2) For every i € J¢:=1I\J, every j € J and every T € (E{JR)M, the square f(7): Al x
Al = Caty, is left adjointable.
There exists a way to associate, to every such quadruple, a functor f;: 67 ;R — Catoo, satisfying
the following conclusions:
(1) f1]0%5(A) R = f|05(A")R, where v: J¢ — I is the inclusion.
(2) For every j € J and every edge e of 6§R, the functor f;(e) is a left adjoint of f(e).
(8) For everyi € J¢, every j € J and every T € (ef,jR)l,l, the square f;(7) is a left adjoint
of f(7).
(4) For two quadruples (I,J,R,f), (I',J',R',f') and maps p: I' — I, u: (A*)*R' — R
such that J' = p=1(J) and f' = f o §3u, the functor f}, is equivalent to fo 07 Ju-

Note that in conclusion (1), §%.(A"). R is naturally a simplicial subset of both 67 R and 67 ; R.
When visualizing (1, 1)-simplices of el{jR, we adopt the convention that direction ¢ is vertical
and direction j is horizontal. If J¢ is nonempty, then condition (2) implies condition (1), and
conclusion (3) implies conclusion (2).

Proof. Recall that we have fixed a fibrant replacement functor Fibr: SetX — SetX.

Let o € (07 ;R), be an object of A/s: R, corresponding to A’}i\zel — R, where n; = n. It
induces a functor f(o): N(D) ~ A[}”]ie’ — Catyy,, where D is the partially ordered set S x T°P
with S = [n]”" and T = [n]’/. This corresponds to a projectively fibrant simplicial functor

F: €[N(D)] — Set{. Let ¢p: €[N(D)] — D be the canonical equivalence of simplicial categories
and put

F' = (Fibr” o St;}Dp o UnJNr(D)op)S’: D — Set.
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We have weak equivalences
F (StE(D)op © Unﬁ(p)op)? — (¢pogpio St;(D)op © U11§(D)op)§'~
~ (¢po St;;;’ °© U]f1§(1))¢»1»)3r = ¢p(F).

Thus, for every 7 € (¢ ;N(D))1,1, the square F(7) is equivalent to f(7), both taking values in
Categ.

Let ¥ be the composition

° Un®
S — (SetZ)T ? i) (SetZ)/N(T)»

where the first functor is induced by F’. For every s € S, the value F(s): X(s) — N(T) is
a fibrant object of (SetZ) /N(7) With respect to the Cartesian model structure. In other words,
there exists a Cartesian fibration p(s): Y(s) — N(T') and an isomorphism X (s) ~ Y'(s)%. By
condition (1), for every morphism ¢ — ¢’ of T, the induced functor Y (s)y — Y'(s); has a left
adjoint. By [52, Corollary 5.2.2.5], p(s) is also a coCartesian fibration. We consider the object
(p(s), &(s)) of (SetX) n(r), where €(s) is the set of p-coCartesian edges of Y(s). By condition
(2), this construction is functorial in s, giving rise to a functor §': S — (Set}) /n(7)-

The composition

/ + T
Sy (Set) nery ~2 (Setf)T T2 (Sett)T

induces a projectively fibrant diagram
G: S xT — Set}.
We denote by G, : [n] — Set} the composition
[n] = S x T — Set},

where the first functor is the diagonal functor. The construction of G, is not functorial in o
because the straightening functors do not commute with pullbacks, even up to natural equiva-
lences. Nevertheless, for every morphism d: ¢ — ¢ in A /8% Ry We have a canonical morphism

S, = d*Gs in (SetZ)["], which is a weak equivalence by Lemma 2.2.3. The functor
(A5 R)oy — (Set )™
sending d: ¢ — & to d*Gs induces a map
N(0) = N((A /s R)o/) — Map?((A")’, (Catec)"),

which we denote by ®(c). Since the category (A/(;;JR)G/ has an initial object, the simpli-
cial set N(o) is weakly contractible. This construction is functorial in o so that ®: N —
Map[d7 ; R, Catso] is a morphism of (SetA)(AM;-,JR)OP. Applying Corollary 1.2.9(1), we obtain
a functor E: 67,7t — Catoo satisfying conclusions (2) and (3) up to homotopy.

Under the situation of conclusion (4), 67 ju: 07, ;R — 07 ;R induces ¢: N — (47 ;u)*N.
By construction, there exists a homotopy between ® and ((7 ;u)*®)o ¢. By Corollary 1.2.9(2),
this implies that J;;, and }”; o 07 yu are homotopic.

By construction, there exists a homotopy between r*® and the composite map r*N — A% ﬂ—Q>

Map|@Q, Catoo], where Q = 0%.(A") R and r: Q — 67 ;R is the inclusion. By Corollary 1.2.9(2),
this implies that E | Q@ and f | @ are homotopic. Since the inclusion

QFx (AN T (07 ,R) x (A (67, R)F x (A1)F
Qb x (A0}
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is marked anodyne, there exists f;: 67 ;R — Cato, homotopic to E such that f;|Q = f]Q. O

Remark 2.2.5. We have the following remarks concerning Proposition 2.2.4.

(1) There is an obvious dual version of Proposition 2.2.4 for right adjoints.
(2) Proposition 2.2.4 holds without the (implicit) convention that R is V-small. To see this,

it suffices to apply the proposition to the composite map 67 R ER Catoo, — @atx, where

W DV is a universe containing R and Cat)’ is the oo-category of co-categories in W.
(3) Consider the 2-tiled co-category (Cato,, T) where T1 = (Catso )1, T2 consists of all functors

that admit a left adjoint, and T7o consists of all squares that are left adjointable. Let

¢: 625 (Catus, T) > 6502, Catoe — Catog

be the natural functor induced by the counit map. Applying Proposition 2.2.4 (and
Remark 2.2.5(2)) to the quadruple ({1,2}, {2}, 627 (Catwo, T), #), we get a functor

b2y 65 19102 (Catos, T) — Catoo.

This functor is universal in the sense that for any quadruple (I, J, R, f) satisfying the con-
ditions in Proposition 2.2.4, if we denote by u: I — {1,2} the map given by u=1(2) = J,
then f: d5(A")*R — Cato, uniquely determines a map u: (A*)*R — J2.Cato by ad-
junction which factorizes through 627 (Cats, T) and f; can be taken to be the composite
functor

57 R~ 65,00 (AM) R 22 57520 ates, T) 225 Cat.

(4) For the quadruple ({1}, {1}, Pr®, ¢) where ¢: Pr® — Cat, is the natural inclusion, the
functor ¢1y constructed in Proposition 2.2.4 induces an equivalence ¢, : (PriRyor — Pyl
This gives another proof of the second assertion of [52, Corollary 5.5.3.4]. By restriction,
this equivalence induces an equivalence ¢p,_, : Pr — (PrR)P of co-categories.

(5) For the quadruple ({1,2}, {1}, S K Fun™*4 (S Cat,.), f) where

f: 8% x Fun™ (S Cat,.) — Catu,
is the evaluation map, the functor
fray: S x Fun™4(5°? Caty,) — Cato

constructed in Proposition 2.2.4 induces an equivalence Fun™9(S° Cat.) —
Fun™9(S, Cat,). This gives an alternative proof of [53, Corollary 4.7.4.18(3)].

2.3. Symmetric monoidal oco-categories. Let Fin, be the category of pointed finite sets
defined in [53, Notation 2.0.0.2]. It is (equivalent to) the category whose objects are sets (n) =
(n)° U {*}, where (n)° = {1,...,n} ({(0)° = @) for n > 0, and morphisms are maps of sets that
map * to *.

Let € be an oo-category that admits finite products. By [53, Proposition 2.4.1.5], we have a
symmetric monoidal oo-category [53, Definition 2.0.0.7] €* — N(Fin.), known as the Cartesian
symmetric monoidal co-category associated to €. We put CAlg(C) := CAlg(C*) [53, Definition
2.1.3.1] as the oo-category of commutative algebra objects in €. We have the functor

(2.1) G: CAlg(e) —»¢C
by evaluating at (1).

Remark 2.3.1. In the above construction, if we put € := Catoo, then CAlg(Caty,) is canonically
equivalent to Cat® | the co-category of symmetric monoidal co-categories [53, Variant 2.1.4.13].
The functor G restricts to a functor Cat® — Cat., sending C® to its underlying co-category €.
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Recall that a symmetric monoidal oo-category €% is closed [53, Definition 4.1.1.15] if the
functor — ® —: € x € — C, written as € — Fun(C, €), factorizes through Fun™(¢C, ©).

Definition 2.3.2. We define a subcategory CAlg(Cato)p, (resp. CAlg(Catos)p, o) of
CAlg(Caty,) as follows:

e An object that belongs to this subcategory is a symmetric monoidal co-categories €%
such that € = G(C?®) is presentable (resp. and stable).

e A morphism that belongs to this subcategory is a symmetric monoidal functor F®: €% —
D® such that the underlying functor F' = G(F®) is a left adjoint functor.

In particular, we have functors

G: CAlg(Catoo )i, — Pr,  G: CAlg(Cateo ), o — Priy-

pr,s

Moreover, we define CAlg(Cato)a S CAlg(Cats), CAlg(Cateo)l, g C CAlg(Cato)p, and

pr,cl

CAlg(Catoo )5 .1 © CAlg(Catoo)l, o to be the full subcategories spanned by closed symmet-

ric monoidal co-categories.

Remark 2.3.3. The oo-categories CAlg(Catoo )%, ) and CAlg(Cato)T, o o admit small limits and
such limits are preserved under the inclusions

CAlg(Catoo )l . ) € CAlg(Catuo ) ., € CAlg(Caty).

pr,st,c pr,c

In fact, we only have to show that for a small simplicial set S and a diagram p®: S — CAlg(Pr")
such that p®(s) = €% is closed for every vertex s of S, the limit I'&H(p@) is closed. Let p: S —
CAlg(PrY) — Prl (resp. p’': S — CAlg(Prt) — Fun(Al, Caty,)) be the diagram induced by
evaluating at the object (1) (resp. unique active map (2) — (1)) of N(Fin,). For every object
cof C= ]'gl(p), the diagram p’ induces a diagram p,: S — Fun(A!, Prl) such that p/(s) is the
functor ffc® —: €3 = C,4 that admits right adjoints, where fI: € — C; is the obvious functor.
Since Prt C Cato, is stable under small limits, the limit lim(p,.) is an object of Fun® (€, €), which
shows that the limit @(p@)) is closed.

A diagram p: S — CAlg(Gatm)gr75t7C1 is a limit diagram if and only if

Gop: §Y— CAlg(Catoe)l .o — Cato

is a limit diagram, by the dual version of [52, Corollary 5.1.2.3].

Let C be an oco-category. Recall that by [53, Construction 2.4.3.1, Proposition 2.4.3.3], we
have an oc-operad p: C! — N(Jin,). Suppose that € is a fibrant simplicial category. We define
@M to be the fibrant simplicial category such that an object of G consists of an object (n) € Fin,
together with a sequence of objects (Y1,...,Y;,) in €, and

Mapeu (X1, Xm), Ve, Yo)) =[] JI Mape(Xi, Yag),
o jea(n)°

where a runs through all maps of pointed sets from (m) to (n). By construction, we have a
forgetful functor €Y — Fin,, and its simplicial nerve N(C€M) — N(Fin,.) is canonically isomorphic
to N(€) — N(Fin,).

Definition 2.3.4. Let p: € — N(Fin,) be a functor of co-categories. We say that a diagram in
C is p-static (or simply static if p is clear) if its composition with p is constant.
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Lemma 2.3.5. Let C be an oco-category that admits finite colimits. Then a square

(Xl,...,Xm)H(Yl,...,Yn)

| |

in G with static vertical morphisms is a pushout square if and only if for every 1 < j < n, the
induced square

Ha(i):j Xi ——=Yj

|

in C is a pushout square.

Proof. 1t follows from the fact that for every pair of objects {X;}1<i<m, {Yj}1<j<m of €1, the
mapping space Mapeu ({X; }1<i<m, {Yj }1<j<m) is naturally equivalent to

11 [T Mape(Xs, Yaw)

a€Homyiy, ({(m),(n)) ica—1(n)°

and the discussion in [52, §4.4.2]. O

Remark 2.3.6. Let T: G — Cat., be a functor that is a lax Cartesian structure [53, Definition
2.4.1.1]. Then we have an induced oc-operad map T®: C!! — CatX [53, Proposition 2.4.1.7],
which is an object of Algeu(Caty). The choice of such T® is parameterized by a trivial Kan
complex. Since the obvious map Algeu (Catl) — Fun(C, CAlg(Caty,)) is a trivial Kan fibration
[53, Theorem 2.4.3.18], in what follows, we will regard T® as a functor € — CAlg(Caty,).

3. ENHANCED OPERATIONS FOR RINGED TOPOI AND SCHEMES

In this chapter, we construct the enhanced operation maps for the category of ringed topoi
and for the category of coproducts of quasi-compact and separated schemes, and establish several
properties of the maps.

The construction is based on the flat model structure. This marks a major difference with the
study of quasi-coherent sheaves. For the latter one can simply start with the projective model
structure constructed in [53, Remark 7.1.2.9], because the category of quasi-coherent sheaves on
affine schemes have enough projectives. The flat model structure for a ringed topological space
has been constructed by Gillespie in [28] and [29]. In §3.1, we adapt the construction to every
topos with enough points.

In §3.2, we construct a functor T (3.1) and its induced functor T® (3.2) that enhance the
derived #-pullback and derived tensor product for ringed topoi. It also encodes the symmet-
ric monoidal structures in a homotopy-coherent way. This serves as a starting point for the
construction of the enhanced operation map.

In §3.3, we introduce an abstract notion of (universal) descent and collect some basic prop-
erties. In §3.4, we construct the enhanced operation maps (3.8) and (3.13) based on the ones
constructed for ringed topoi. In §3.5, we establish some properties of the maps constructed in the
previous section, including an enhanced version of (co)homological descent for smooth coverings.
This property is crucial for the extension of the enhanced operation map to algebraic spaces and
stacks in Chapter 5.
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3.1. The flat model structure. Let (X,0x) be a ringed topos. In other words, X is a
(Grothendieck) topos and Ox is a sheaf of rings in X. An Ox-module C is called cotorsion
if Extl(F, C) = 0 for every flat Ox-module F. The following definition is a special case of
[29, Definition 2.1].

Definition 3.1.1. Let K be a cochain complex of O x-modules.

K is called a flat complez if it is exact and Z" K is flat for all n.

K is called a cotorsion complex if it is exact and Z™ K is cotorsion for all n.

K is called a dg-flat complex if K™ is flat for every n, and every cochain map K — C,
where C' is a cotorsion complex, is homotopic to zero.

K is called a dg-cotorsion complex if K™ is cotorsion for every n, and every cochain map
F — K, where F is a flat complex, is homotopic to zero.

Lemma 3.1.2. Let (f,v): (Y,0y) = (X, 0x) be a morphism of ringed topoi. Then

(1) (f,v)* preserves flat modules, flat complezxes, and dg-flat complezes;
(2) (f,7)« preserves cotorsion modules, cotorsion complexes, and dg-cotorsion complezes.

Recall that the functor (f,v)* = Oy ®f+0, f*—: Mod(X,0x) = Mod(Y, Oy) is a left adjoint
of the functor (f,7)«: Mod(Y,Oy) — Mod(X, Ox).

Proof. Let F € Mod(X,Ox) be flat, and C € Mod(Y, Oy ) cotorsion. We have a monomorphism
Ext'(F, (f,7).C) — Ext'((f,7)*F,C) = 0. Thus, (f,7).C is cotorsion. Moreover, since short
exact sequences of cotorsion Oy-modules are exact as sequences of presheaves, (f,~). preserves
short exact sequences of cotorsion modules, hence it preserves cotorsion complexes. It follows
that (f,v)* preserves dg-flat complexes.

Tt is well known that (f,~)* preserves flat modules and short exact sequences of flat modules.

It follows that (f,v)* preserves flat complexes and hence (f, ). preserves dg-cotorsion complexes.
O

The model structure in the following generalization of [29, Corollary 7.8] is called the flat
model structure.

Proposition 3.1.3. Assume that X has enough points. Then there exists a combinatorial model
structure on Ch(Mod(X,Ox)) such that

e The cofibrations are the monomorphisms with dg-flat cokernels.
e The fibrations are the epimorphisms with dg-cotorsion kernels.
e The weak equivalences are quasi-isomorphisms.

Furthermore, this model structure is monoidal with respect to the usual tensor product of chain
complezes.

For a morphism (f,v): (Y,0y) — (X,0x) of ringed topoi with enough points, the pair of
functors ((f,v)*, (f,7)«) is a Quillen adjunction between the categories Ch(Mod(Y,Oy)) and
Ch(Mod(X,Ox)) endowed with the flat model structures.

Remark 3.1.4. We have the following remarks about different model structures.

(1) The functor id: Ch(Mod(X,Ox))* — Ch(Mod(X,Ox))™ is a right Quillen equiv-
alence. Here Ch(Mod(X,0x))#t (resp. Ch(Mod(X,0x))™) is the model category
Ch(Mod(X, Ox)) endowed with the flat model structure (resp. the injective model struc-
ture [53, Proposition 1.3.5.3]).

(2) If X = x and Ox = R is a (commutative) ring, then id: Ch(Mod(x, R))P™ —
Ch(Mod(x, R))t is a symmetric monoidal left Quillen equivalence between sym-
metric monoidal model categories. Here Ch(Mod(x, R))P*™ is the model category
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Ch(Mod(x*, R)) endowed with the (symmetric monoidal) projective model structure
[53, Proposition 7.1.2.11].

To prove Proposition 3.1.3, we adapt the proof of [29, Corollary 7.8]. Let S be a site, and G
a small topologically generating family [3, Exposé ii, Définition 3.0.1] of S. For a presheaf F' on
S, we put |F|g = supyeg card(F(U)).

Lemma 3.1.5. Let 8 > card(G) be an infinite cardinal such that 8 > card(Hom(U,V)) for all
U andV in G, and k a cardinal > 2°. Let F be a presheaf on S such that |F|g < k, and F+
the sheaf associated to F. Then |F*|g < k.

Proof. By the construction in [3, Exposé ii, Définition 3.5], we have ' = LLF, where

(LF)(U)= lim Homg(R,F)
ReJ(U)

for U € S in which J(U) is the set of sieves covering U and S is the category of presheaves on
S. By [3, Exposé ii, Proposition 3.0.4] and its proof, |LF|g < BQKJBZ = K. a

Let Og be a sheaf of rings on S. For an element U € S, we denote by jyi the left adjoint of the
restriction functor Mod(S, Og) — Mod(U, Oy ). Using the fact that (ji1Ov)veg is a family of
flat generators of Mod(S, Og), we have the following analogue of [29, Lemma 7.7] with essentially
the same proof.

Lemma 3.1.6. Let 8 > card(G) be an infinite cardinal such that 8 > card(Hom(U,V)) for all
U andV in G. Let k > max{2°,|0g|c} be a cardinal such that jinOy is k-generated for every
U in G. Then the following conditions are equivalent for an Og-module F':

(1) |Fla < &;

(2) F is k-generated;

(8) F is k-presentable.

Let F' be an Og-premodule. We say that an Og-subpremodule E C F'is G-pure if E(U) C
F(U) is pure for every U in G. This implies that E* C F* is pure. As in [19, Proposition 2.4],
one proves the following.

Lemma 3.1.7. Let 8 > card(G) be an infinite cardinal such that 8 > card(Hom(U, V')) for all
UandV in G. Let k > max{2%, |0s|g} be a cardinal, and let E C F be Og-premodules such
that |E|c < k. Then there exists a G-pure Og-subpremodule E' of F containing E such that
|E ¢ < K.

Proof of Proposition 3.1.3. We choose a site S of X, and a small topologically generating family
G, and a cardinal k satisfying the assumptions of Lemma 3.1.6. Using the previous lemmas,
one shows as in the proof of [29, Corollary 7.8] that the conditions of [29, Theorem 4.12 &
Theorem 5.1] are satisfied for x, which finishes the proof. O

Remark 3.1.8. Using the sheaves i,(Q/Z), where i runs through points P — X of X, one can
show as in [28, Proposition 5.6] that a complex K of Ox-modules is dg-flat if and only if K™ is
flat for each n and K ®¢, L is exact for each exact sequence L of Ox-modules.

3.2. Enhanced operations for ringed topoi. Let us start by recalling the category of ringed
topoi.

Definition 3.2.1. Let RingedPTopos be the (2, 1)-category of ringed U-topoi in V with enough
points:

e An object of RingedPTopos is a ringed topos (X, Ox) such that X has enough points.
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e A morphism (X,0x) — (X’,0x/) in RingedPTopos is a morphism of ringed topoi in
the sense of [3, Exposé iv, Définition 13.3], namely a pair (f,v), where f: X — X’ is a
morphism of topoi and v: f*Ox» — Ox.

e A 2-morphism (f1,71) — (f2,72) in RingedPTopos is an equivalence €: f; — fo such
that o equals the composition f50x < fiO0x I 9x.

e Composition of morphisms and 2-morphisms are defined in the obvious way.

We sometimes simply write X for an object of RingedPTopos if the structure sheaf is insensitive.

Our goal in this section is to construct a functor
(3.1) T: N(RingedPTopos) — Cat,

that is a lax Cartesian structure such that the induced functor T® (see Remark 2.3.6) factorizes
through CAlg(Caty, )L C CAlg(Caty). In other words, we have the induced functor

pr,st,cl
(3.2) T®: N(RingedPTopos®) — CAlg(Catu, )pr st.cls

where CAlg(Caty )pr st,c1 18 defined in Definition 2.3.2.

Let Gatf be the (2,1)-category of marked categories, namely pairs (C, &) consisting of an
(ordinary) category € and a set of arrows & containing all identity arrows. We have a simplicial
functor Cat] — Set} sending (€, &) to (N(€), €). We start by constructing a pseudofunctor

T: (RingedPTopos?? ) — Cat .
Recall that to every object X € RingedPTopos, we can associate a marked simplicial set
(N(Ch(Mod(X))ag-nat), W (X)),

where Ch(Mod(X))dg-fiat € Ch(Mod(X)) is the full subcategory spanned by the dg-flat com-
plexes, and W(X) is the set of quasi-isomorphisms. We define the image of an object
(X1,...,Xm) under T to be

m

[ T(Ch(Mod(X:))ag-ar, W (X:)).

i=1
By definition, a (1-)morphism f: (X1,...,X,,) — (Y1,...,Y,) in (RingedPTopos®?)! consists
of a map a: (m) — (n) and a morphism f;: Y, ;) — X; in RingedPTopos for every i € o (n)°.
Now we define the image of f under T to be the functor
[1(CR(Mod(X:))ag-fas, W H (Ch(Mod(Y}))ag-sar, W (Y5))

i=1

{Kih<icm = Q) fK; ;
a(i)=j 1<j<n
where we take the unit object as the tensor product over an empty set. The image of 2-morphisms
are defined in the obvious way. Composing with the simplicial functor Gat+ — Set+ Fibr — (Se t+)
and taking nerves, we obtain the desired functor T (3.1).

Lemma 3.2.2. We have that

(1) the functor T is a lax Cartesian structure [53, Definition 2.4.1.1];
(2) the functor T® factorizes through CAlg(Caty, ) :and

pr,st,cl?
(3) the functor T® sends small coproducts to products.
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Proof. Part (1) is clear from the construction.

For (2), we note that for an object X of RingedPTopos, its image under T, denoted by
D(X), is the fibrant replacement of (N(Ch(Mod(X))dg-fiat), W(X)). In particular, by Remark
3.1.4(1) and [53, Remark 1.3.4.16, Proposition 1.3.5.15], D(X) is equivalent to the derived oo-
category of Mod(X) defined in [53, Definition 1.3.5.8]. It is a presentable stable co-category by
[53, Propositions 1.3.5.9, 1.3.5.21(1)]. Combining this with Lemma 2.1.3, we deduce that the
image of T® is actually contained in CAlg(Cat,)" This proves part (2).

pr,st,cl”
Part (3) follows from the construction and Remark 2.3.3. O

Notation 3.2.3. For an object X of RingedPTopos, we denote the image of X under T® by
D(X)®, which is a symmetric monoidal co-category, whose underlying co-category is denoted by
D(X) as in the proof of the previous lemma.

Remark 3.2.4. We have the following remarks.

(1) The oo-category T((X1,..., X)) is equivalent to [T/, D(X;).

(2) By Remark 3.1.4(2) and [53, Remark 4.1.7.5], for every (commutative) ring R, D(x, R)®
is equivalent to the symmetric monoidal oo-category D(Ch(R))® defined in [53, Remark
7.1.2.12).

(3) Let f: X — X’ be a morphism of RingedPTopos. It follows from Remark 3.1.8 and
[45, Lemma 14.4.1, Theorem 18.6.4] that the functors f*: D(X’) — D(X) and — ®x
—: D(X) x D(X) — D(X) induced by T® are equivalent to the respective functors
constructed in [45, §18.6], where D(X) = hD(X) and D(X’) = hD(X’).

Let Ring be the category of (small commutative) rings. To deal with torsion and adic coeffi-
cients simultaneously. We introduce the category Rind of ringed diagrams as follows.

Definition 3.2.5 (Ringed diagram). We define a category Rind as follows:

e An object of Rind is a pair (2, A), called a ringed diagram, where = is a small partially
ordered set and A: Z°? — Ring is a functor. We identify (Z,A) with the topos of
presheaves on Z, ringed by A. A typical example is (N,n + Z/¢"*1Z) with transition
maps given by projections.

e A morphism of ringed diagrams (=, A’) — (Z,A) is a pair (T',y) where I': &/ — Zis a
functor (that is, an order-preserving map) and v: T'*A := AoT'? — A’ is a morphism of
iRingE/op

For an object (Z,A) of Rind and an object £ of Z, we define the over ringed diagram (Z,A) ¢
to be the ringed diagram whose underlying category is =/ and the corresponding functor is
A/E =A | E/g.

For a topos X and a small partially ordered set =, we denote by X= the topos Fun(Z°?, X).
If (2, A) is a ringed diagram, then A defines a sheaf of rings on X=, which we still denote by A.
We thus obtain a pseudofunctor

(3.3) PTopos x Rind — RingedPTopos

carrying (X, (Z,A)) to (X=, A), where PTopos is the (2, 1)-category of ringed topoi with enough
points. Composing the nerve of (3.3) with T (3.1), we obtain a functor

(3.4) TTOPOSEOI: (N(PTopos)?? x N(Rind)°P)! — Catq,

that is a lax Cartesian structure.

Notation 3.2.6. By abuse of notation, we denote by D(X, \)® the image of an object (X, \) of
PTopos x Rind under the induced functor

PTopos BOE = (TTOPOSEOI)(@: N(PTopos)?? x N(Rind)? — CAlg(Cats, )L

pr,st,cly
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whose underlying oo-category is denoted by D(X,\) which is (equivalent to) the image of
(X, X, (1),{1}) under the functor pq,p,,EO".

Definition 3.2.7. A morphism (I',7): (2',A’) — (Z, A) of Rind is said to be perfect if for every
& e = N(¢) is a perfect complex in the derived category of A(T'(€))-modules.

Lemma 3.2.8. Let f: Y — X be a morphism of PTopos, and w: X' — X a perfect morphism of
Rind. Then the square

(3.5) DY, N) <I— D(X, )

”*T T’T*
i

DY, ) <— D(X, \)
s Tight adjointable and its transpose is left adjointable.

Proof. Write A = (Z,A) and X = (2, A’). For { € Z/, we denote by e¢ the natural morphism
({&}, A (€)) = (2',A). We show that (3.5) is right adjointable and 7* preserves small limits. As
the family of functors (ef)¢ezr is conservative, it suffices to show these assertions with 7 replaced
by es and by 7o e¢. In other words, we may assume =’ = {x}. We decompose 7 as

({51, A) 5 ({CHLAWQ) = (B,A)c 5 (B, ).

We show that the assertions hold with 7* replaced by i*, by s*, and by t*. The assertions
for i* follow from Lemma 3.2.9 below. The assertions for s* are trivial as s* ~ p,, where
p: (E,A)c = ({¢},A(Q)). As t, is conservative, the assertions for ¢* follow from the assertions
for t, and t,t*— ~ fHomA(C)(A’V, —), which are trivial. Here we used the fact that for any perfect
complex M in the derived category of A(¢)-modules, the natural transformation M ®,( ) — —
Homy ¢y (MY, —) is a natural equivalence, where M"Y = Homy)(M,A(¢)). This applies to
M = A’ by the assumption that 7 is perfect. O

Lemma 3.2.9. Let f: (X',A") — (X,A) be a morphism of ringed topoi, and j:V — U a
morphism of X. Put j' :== f~1(j): V' = f~1(V) — f~Y(U) = U'. Then the square

§*

D(X/U7AXU) D(X/V,AXV)

fful/ lf;V

D(X )y, A x U') == D(X )y, A x V)

is left adjointable and its transpose is right adjointable.

Proof. The functor ji: Mod(X,y,A x V) — Mod(X i, A x U) is exact and induces a functor
D(X )y, AxV) = D(X,y,AxU), left adjoint of j*. The same holds for ji. The first assertion of
the lemma follows from the existence of these left adjoints and the second assertion. The second
assertion follows from the fact that j'* preserves fibrant objects in Ch(Mod(—))™. O

Remark 3.2.10. Let = be a poset and let A be a ring. Let Az: E°®» — A be the constant
functor of value A and let p: (£, Ag) — (x,A) be the obvious morphism of ringed diagrams. By
Remark 3.1.4(1) and [53, Proposition 1.3.4.25], for any topos X with enough points, we have
an equivalence of oo-categories D(X, (E,Az)) — Fun(N(Z°P), D(X,A)), via which p* can be

identified with the diagonal embedding D(X, A) — Fun(N(Z°P), D(X, A)).
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3.3. Abstract descent properties. We start from the definition of morphisms with descent
properties.

Definition 3.3.1 (F-descent). Let C be an oo-category admitting pullbacks, F': CP? — D a
functor of co-categories, and f: XS' — Xi'l a morphism of €. We say that f is of F-descent
if Fo(X})P:N(A,) — D is a limit diagram in D, where X} : N(A)? — € is a Cech
nerve of f (see the definition after [52, Proposition 6.1.2.11]). We say that f is of universal
F-descent if every pullback of f in € is of F-descent. Dually, for a functor G: € — D, we say
that f is of G-codescent (resp. of universal G-codescent) if it is of G°P-descent (resp. of universal
G°P-descent).

We say that a morphism f of an oco-category C is a retraction if it is a retraction in the
homotopy category hC. Equivalently, f is a retraction if it can be completed into a weak retraction
diagram [52, Definition 4.4.5.4] Ret — € of €, corresponding to a 2-cell of € of the form

Y
7
The following is an oco-categorical version of [30, Propositions 10.10, 10.11] (for ordinary descent)
and [3, Exposé vbis, Proposition 3.3.1] (for cohomological descent).
Lemma 3.3.2. Let C be an oco-category admitting pullbacks, and F: C°P — D a functor of

oco-categories. Then

(1) Every retraction f in C is of universal F-descent.

(2) Let
(3.6) w22z
| ]
Y —X

be a pullback diagram in € such that the base change of f to (Z/X)' is of F-descent
for i > 0 and the base change of p to (Y/X)? is of F-descent for j > 1. Then p is of

F-descent.
Y
N
h

(3) Let
Z———X

be a 2-cell of C such that h is of universal F-descent. Then f is of universal F-descent.

(4) Let
Y
g f
7N

Z ——— X

be a 2-cell of C such that f is of F-descent and g is of universal F-descent. Then h is
of F-descent.

The assumptions on f and p in (2) are satisfied if f is of F-descent and g and ¢ are of universal
F'-descent.
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Proof. For (1), it suffices to show that f is of F-descent. Consider the map N(A ;)% x Ret — C,
right Kan extension along the inclusion

K={-1} xRet J] N@AT)? x {0} CN(A})? x Ret
{1} x{0}
of the map K — € corresponding to the diagram

y— &y

f Y f
70X
Then by [53, Corollary 4.7.2.9], the Cech nerve of f is split. Therefore, the assertion follows from
the dual version of [52, Lemma 6.1.3.16].

For (2), let X} : N(A;)°? x N(A;)°? — € be an augmented bisimplicial object of € such
that X, is a right Kan extension of (3.6), considered as a diagram N(Afo)"p X N(Afo)"p — C.
By assumption, F o (X;5)P is a limit diagram in D for 4 > —1 and F o (X:rj)"p is a limit diagram
in D for j > 0. By the dual version of [52, Lemma 5.5.2.3], F' o (X, )P is a limit diagram in
D, which proves (2) since X | is a Cech nerve of p.

For (3), it suffices to show that f is of F-descent. Consider the diagram

(3.7) Z idz

N

YXxXx Z——7
Prz

g
\Lpry h
Y . X
in C. Since pry is a retraction, it is of universal F-descent by (1). It then suffices to apply (2).

For (4), consider the diagram (3.7). By (3), pry is of universal F-descent. It then suffices to
apply (2). O

Next, we prove a descent lemma for general topoi. Let X be a topos that has enough points,
with a fixed final object e. Let ug: Uy — e be a covering, which induces a hypercovering ue : Uy —
e by taking the Cech nerve. Let A be a sheaf of rings in X, and put A,, :== AxU,,. In particular, we
obtain an augmented simplicial ringed topoi (X, , As), where U_; = e and A_; = A. Suppose
that for every n > —1, we are given a strictly full subcategory C,, (€ = €_;) of Mod(X v, , An)
such that for every morphism a:: [m] — [n] of Ay, uj,: Mod(X y, ,Ay) — Mod(X /y,,, Ap) sends
C, to C,,. Then, applying the functor G o T® (3.2), we obtain an augmented cosimplicial co-
category De, (X y,,As), where De, (X /v, , An) is the full subcategory of D(X,y, ,Ay,) spanned
by complexes whose cohomology sheaves belong to C,.

Lemma 3.3.3. Assume that for every object # of Mod(X, A) such that u’y.F belongs to Co, we
(0]
have & € C. Then the natural map
De(X,A) = lim De,, (X, An)
neA
s an equivalence of co-categories.
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Proof. We first consider the case where €,, = Mod(X ¢, , An) forn > —1. We apply [53, Corollary
4.7.5.3]: Assumption (1) follows from the fact that u},: D(X,A) — D(X,y,, Ag) is a morphism
0
of Prk: and the functor uyo is conservative since ug is a covering. Therefore, it remains to check
0
Assumption (2) of [53, Corollary 4.7.5.3], that is, the left adjointability of the diagram

*
ud7n+1

D(X/Uwﬂ Am) OH D(X/Um,+1 ) Am+1)

* *
udn+1

DXy, An) ——=D(X)1,. 1, Ant1)

for every morphism «: [m] — [n] of A, , where o/: [m + 1] — [n + 1] is the induced morphism.
This is a special case of Lemma 3.2.9.
Now the general case follows from Lemma 3.3.4 below and the fact that u}, is exact. |
0

Lemma 3.3.4. Let p: K9 — Caty, be a limit diagram. Suppose that for each vertex k of K<,
we are given a strictly full subcategory Dy C C, = p(k) such that
(1) For every morphism f: k — k', the induced functor p(f) sends Dy to Dys.
(2) An object ¢ of Cop belongs to Do, if and only if for every vertex k of K, p(fr)(c) belongs
to Dy, where oo denotes the cone point of K<, fi: oo — k is the unique edge.
Then the induced diagram q: K9 — Cats sending k to Dy, is also a limit diagram.

Proof. Let p: X — (K°P)” be a Cartesian fibration classified by p [52, Definition 3.3.2.2]. Let
Y C X be the simplicial subset spanned by vertices in each fiber X that are in the essential
image of Dy, for all vertices k of K<. The map G =p|Y:Y — (K°)> has the property that if
f:x — y is p-Cartesian and y belongs to Y, then = also belongs to Y by assumption (1), and
f is G-Cartesian by the dual version of [52, Proposition 2.4.1.8]. It follows that G is a Cartesian
fibration, which is in fact classified by ¢. By assumption (2) and [52, Corollary 3.3.3.2], ¢ is a
limit diagram. O

3.4. Enhanced operations for quasi-compact and separated schemes.

Notation 3.4.1. For a property (P) in the category Ring, we say that a ringed diagram (T", A)
(Definition 3.2.5) has the property (P) if for every object £ of =, the ring A(£) has the property
(P). We denote by Rindg,, the full subcategory of Rind consisting of torsion ringed diagrams.

Let 8ch°®? C Sch be the full subcategory spanned by (small) coproducts of quasi-compact
and separated schemes. For each object X of Sch (resp. Sch*°P), we denote by Et(X) C 8chx
(resp. Etacsep(X) C SCh%fep) the full subcategory spanned by the étale morphisms, which is
naturally a site. We denote by Xg; (resp. Xqc.sep.st) the associated topos, namely the category
of sheaves on Et(X) (resp. Etas¢P(X)). In [3, Exposé vii, §1.2], Et(X) is called the étale site
of X and Xy is called the étale topos of X. The inclusion Eta%%P(X) C Et(X) induces an
equivalence of topoi X¢ — Xqc.sep.st- In this chapter, we will not distinguish between X¢; and
qu.sep.ét-

Definition 3.4.2. In what follows, we will often deal with oco-categories of the form
(CP x DOP)I—LOP = ((@%P x DOP)H)op

where € is an oo-category and D is a subcategory of N(Rind). Suppose that € is a subset of
edges of C that contains every isomorphism.

We say that an edge f: ({(X/,Y)icicm) = ({(Xi, Yi) hcicm) of (CP x DoP)LoP statically
belongs to € if f°P is static (Definition 2.3.4) and the corresponding edge X! — X; (resp. Y/ — Y;)



92 YIFENG LIU AND WEIZHE ZHENG

of € (resp. D) belongs to € (resp. is an isomorphism). By abuse of notation, we will denote again
by € the subset of edges of (€% x DP):oP that statically belong to . Moreover, if sometimes
€ is defined by a property P, then edges that statically belong to € are said to statically have
the property P. We also denote by “all” the set of all edges of (C°P x Dor)op,

For € = N(8ch9“*P), we denote by

e F the set of morphisms of € locally of finite type;
e P C F the subset consisting of proper morphisms;
e [ C F the subset consisting of local isomorphisms.

Lemma 3.4.3. Let D be a subcategory of N(Rind). The natural map
5.3y (N(8ch™=P)oP 5 DPYILPYEL ) — 55 1) (N(SchI™=P) P x DoP)HoP)garhy
is a categorical equivalence.

Proof. The proof is similar to Corollary 1.0.4. Let Fy C F be the set consisting of morphisms
of finite type, and put Iy := I N F}. Consider the following commutative diagram

((N(Sch*P)oP x DPYLOR)FR | oy — 05 13 (N(Sch*P) P x Dep)ythorygans, )

l |

((N(8ch=P)op x D)Y@ | ——— 05 1) (N(Sch?*P) P x DOP)HLP)Gah).

1(4)

05 (3}
To show that the lower horizontal map is a categorical equivalence, it suffices to show that the
other three maps are categorical equivalences.

In Theorem 1.0.1, we set k = 4, C = (N(8ch®*P)or x DoP)lov e = [ &) = P, & = Iy,
&3 =1, and &4 = all. Note that we have a canonical isomorphism

(N(Schqc.sep)op % Dop)ﬂ ~ (N(Schqc.sep)op)H XN(EFin*) (DOP)H.

By Nagata compactification theorem [11, Theorem 4.1], condition (2) of Theorem 1.0.1 is sat-
isfied. The other conditions are also satisfied by Lemma 2.3.5. It follows that the map in the
upper horizontal arrow is a categorical equivalence. Similarly, using Theorem 1.0.1, one proves
that the vertical arrows are also categorical equivalences. 0

Remark 3.4.4. The same proof shows that the lemma also holds with 8ch°*P replaced by the
category of disjoint unions of quasi-compact quasi-separated schemes and F replaced by the set
of separated morphisms locally of finite type.

Our goal is to construct a map (3.13) which encodes f*, fi and the monoidal structure given
by tensor product.

We start by encoding f* and the monoidal structure. Composing the nerve of the pseudo-
functor 8ch®**P — PTopos carrying X to Xer With poqpeEO! (3.4), we obtain a functor

(3.8) sepac-ser BOT: (N(8ch5P)oP » N(Rind)P)! — Catq,
that is a lax Cartesian structure, which induces a functor (Notation 3.2.3)
(3.9) senaeser EO® = (gaac e EON)®: N(8chI®P)P x N(Rind)” — CAlg(Catos )5 st el

by Lemma 3.2.2.
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To encode fi, we resort to the technique of taking partial adjoints. Consider the composite
map
(3.10) 0 (1,2,3) (N(8ch™P)°F x N(Rind)?) P B

T senac-sep BEO'(3.8)
senacsep B0 (08

— (N(8ch™“*P)oP » N(Rind)?”) Cato.

First, we apply the dual version of Proposition 2.2.4 to (3.10) for direction 1 to construct the
partial right adjoint

(3.11) 32,3y (N(8ch9*P)P 5 N(Rindior)”?) P) &5y — Catoc.

The adjointability condition for direction (1,2) is a special case of that for direction (1,3). We
check the latter as follows.

Lemma 3.4.5. Let a: (m) — (n) be a morphism of Fin,. Let f;: X! — X; be proper morphisms
of schemes in 8ch*P and take \; € Rindio, for 1 < i < m. For pullback squares

Ha(i):j X —— Ha(i):j Xi

of schemes in 8chi“*P and morphisms p; — Ha(i):j Ai in Rindye, for 1 < j < n, the square

HjGT Q(Yj/v//'j) DI HjeT D(}/j’ :U'j)

T T

[Lics DIX] Ai) =——TTies DX, Ni)
given by pullback and tensor product is right adjointable.

Note that the right adjoints of the horizontal arrows admit right adjoints. Indeed, for the
lower arrow we may assume X; quasi-compact and apply Lemma 2.1.4.

Proof. Decomposing the product categories with respect to (n), we are reduced to two cases: (a)
n =0; (b) n =1 and a({m)°) C {1}. Case (a) is trivial. For case (b), writing (f;)i1<i<m as a
composition, we may further assume that at most one f; is not the identity. Changing notation,
we are reduced to showing that for every pullback square

5

Y ——

g’l lg
x—tox

of schemes in 8ch9“*® with f proper and every morphism 7: g — A in Rindy,,, the diagram

DY, 1) <1 DY, 1)
(g’7ﬂ)*—®f/*KT T(gﬂr)*—fz@K
DX, \) <L— D(X, \)

is right adjointable for every K € D(Y, ). As in the proof of Lemma 3.2.8, we easily reduce
to the case with A = ({*},A) and u = ({x}, M). This case is the combination of proper base
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change and projection formula. See [3, Exposé xvii, Théoréme 4.3.1] for a proof in D~. Finally,
the right completeness of unbounded derived categories [53, Proposition 1.3.5.21] implies that
every object L of D(X, \) is the sequential colimit of 7<”L. The unbounded case follow since the
vertical arrows and the right adjoints of the horizontal arrows preserve sequential colimits. [

Second, we apply Proposition 2.2.4 to (3.11) for direction 2 to construct a map
(3.12) 3 31 (N(8ch®*P)°P 5 N(Rindyor) )™ P) B an = Catioo.-

The adjointability condition for direction (2,1) follows from the fact that, for every separated étale
morphism f of finite type between quasi-separated and quasi-compact schemes, the functor f
constructed in [3, Exposé xvii, Théoréme 5.1.8] is a left adjoint of f* [3, Exposé xvii, Proposition
6.2.11]. The adjointability condition for direction (2,3) follows from étale base change and a
trivial projection formula [45, Proposition 18.2.5].

Third, we compose (3.12) with (a quasi-inverse) of the categorical equivalence in Lemma 3.4.3
to construct a map

(3.13) scnacser BOM 2 63 01 (N(8ch®*P)P 5 N(Rindyor) )™ ) E5) = Catoo.

Now we explain how to encode f, and f' via adjunction. Note that we have a natural map
from 63 (5, (N(Sch“*P)°P x N(Rindyor ) ) TP) 45 to N(Fin ), whose fiber over (1) is isomorphic
to 5;1{2}N(Schqc'sep)§%gﬁl x N(Rindo,)°P. Denote by g.acser EO} the restriction of g ac.sep EO!
to the above fiber. By construction, we see that the image of g ac.s<eo EO; actually factorizes
through the subcategory Prl: C Cato,. In other words, (3.13) induces a map

(314) SChqasepEO?‘I 5;7{2}N(8Chqosep)?;ﬁl X N(Rindtor)oz) — ‘:Prgt
Evaluating (3.9) at the object (1) € Fin,, we obtain the map
(3.15) sepacser BO* 1 N(8ch“5P)oP 5 N(Rind)P — Prk.

Note that this is equivalent to the map obtained by restricting (3.14) to the second direc-
tion, on N(8ch1°*P)oP x N(Rindte,)°?. Composing the equivalence ¢p,, in Remark 2.2.5 with
scpac-ser EO*, we obtain the map

sepac-ser BO, 1 N(8ch9®5P) x N(Rind) — Prk.
Restricting (3.14) to the first direction, we obtain the map
(3.16) senacsr BO, 1 N(Sch9®*P) o x N(Rindyer)?? — Prl.
Composing the equivalence ¢, in Remark 2.2.5 with g acsee EO,, we obtain the map
(3.17) senacser BO': N(8ch9¢5P)% 5 N(Rinde,) — Prit.

Variant 3.4.6. Let Q(C F) C Ar(8ch9®P) be the set of locally quasi-finite morphisms [1,
01TD]. Recall that base change for an integral morphism [3, Exposé viii, Corollaire 5.6] holds
for all Abelian sheaves. Replacing proper base change by finite base change in the construction
of (3.13), we obtain

senae EO™: 83 ) (N(Sch®**P)oP x N(Rind)P)'P)&T) — Catee.

When restricted to their common domain of definition, this map is equivalent to g ac.seo EO!
(3.13).

Notation 3.4.7. We introduce the following notation.
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(1) For an object (X,\) of 8ch*® x Rind, we denote its image under gac.sc0 EO® by
D(X,\)®, with the underlying oo-category D(X, A). In other words, we have D(X, \)® =
D(Xgt, A\)® and D(X,\) = D(Xet, A). By construction and Remark 3.2.4(2), D(X, \)
is equivalent to the derived oo-category of Mod(X§,A) if A = (Z,A), and the monoidal
structure on D(X, A\)® is an oo-categorical enhancement of the usual (derived) tensor
product in the classical derived category.

(2) For a morphism f: (X', )) — (X, ) of 8ch9*®P x Rind, we denote its image under
scnac=er EO® by

2 DX, 0% = DX, \)®,
with the underlying functor f*: D(X,\) — D(X’, \). Note that f* is an co-categorical
enhancement of the usual (derived) pullback functor in the classical derived category,

which is monoidal. If A" — X is the identity, we denote the image of f under g acser EO,
by

fe: DY, A) = D(X,N),

which is an oo-categorical enhancement of the usual (derived) pushforward functor.
(3) For a morphism f: Y — X locally of finite type of 8ch9®*? and an object A of Rindyey,
we denote its image under g ac.sp EO, and ggpac.se0 EO' by

fi: DY, N) = D(X,N), f:DX,\) = DY, N

which are co-categorical enhancement of the usual f; and f' in the classical derived
category, respectively.

Remark 3.4.8. In the previous discussion, we have constructed two maps
sepac=r EOT, g pacsen EOM
from which we deduce the other six maps
schacsr EO®, g acsen EOY, gepacsen BO*, gpacsen BO,, gopacser EO), gopac.sen EO'

Moreover, maps ggpacse0 EO! and g pac.se0 EO! are equivalent on their common part of domain,
which is (N(8ch9P)oP x N(Rindy,,)P)H.

Now we explain how Kiinneth Formula is encoded in the map gac.«co EO™!. In particular, as
special cases, Base Change and Projection Formula are also encoded. Suppose that we have a
diagram

v, <2y % .y,

| b
P1 D2

Xi<=—X ——Xs,

which exhibits Y as the limit Y7 xx, XX Xx, Y5 and such that f; and fo (hence f) are locally
of finite type. Fix an object A of Rindy,,. They together induce an edge

((Yh /\)7 (Y27 A)) - (Y7 /\)

i i

(X1, A), (X2,A)) —= (X, \)
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of 65 1y (N(Sch*™P)P x N(Rindyor ) %) ™P) 5278 above the unique active map (2) — (1) of Fin,.

Applying the map g acser EO!! and by adjunction, we obtain the following square

G —®yvas—

D(Y:,A) x D(Ya, \) D(Y, N)
f1!><f2!l \Lf!
D(X1, \) % D(Xa, A) 22X px, \)

in Cato,. At the level of homotopy categories, this recovers the classical Kiinneth Formula.
We end this section by the following adjointability result.

Lemma 3.4.9. Let f: Y — X be a morphism locally of finite type of 8ch*®, and m: X — A
a perfect morphism of Rindyo, (Definition 3.2.7). Then the square

DY, N) L= DX, N)

| o

s right adjointable and its transpose is left adjointable.

Proof. The assertion being trivial for f in I, we may assume f in P. As in the proof of Lemma
3.2.8, we are reduced to the case where 7* is replaced el and t, ot*, respectively. Here, we have

maps ({x},A') = ({C},A()) = (E,A).

The assertion for ¢, ot* is trivial, since a left adjoint of ¢, 0t* is —®x ¢ AY ~ Homy ey (A, =),
where AV = Homy ey (A, A(€)). We denote by e a left adjoint of ef. For £ € E, since ¢f
commutes with f, by Lemma 3.2.8, it suffices to check that ef o ey commutes with f,. Here
ec: ({€HA(€)) — (E,A) is the obvious morphism. For § < ¢, we have ef o et > — @) A(§)
and the assertion follows from projection formula. For other { € =, the map €f o e¢) is zero. [

3.5. Poincaré duality and (co)homological descent. For an object X of 8ch?®*" and an
object A = (Z,A) of Rind, we have a t-structure (DS(X,\), DZ(X,\)) on D(X, ), which
induces the usual t-structure on its homotopy category D(X5,A). We denote by 7<% and 720
the corresponding truncation functors. The heart

DX, \) = DX, \) N DX, \) C D(X,\)
is canonically equivalent to (the nerve of) the Abelian category

Mod(X, \) := Mod(XZ, A).

étr

The constant sheaf Ax on X= of value A is an object of DY (X, \).

We fix a nonempty set [J of rational primes. Recall that a ring R is a O-torsion ring if each
element is killed by an integer that is a product of primes in [J. In particular, a (J-torsion ring is a
torsion ring. We denote by Rind_io, € Rindie, the full subcategory spanned by [J-torsion ringed
diagrams. Recall that a scheme X is O-coprime if [J does not contain any residue characteristic
of X. Let 8ch™® be the full subcategory of 8ch?“*? spanned by [l-coprime schemes. In
particular, Spec Z[J™'] is a final object of Schilj"**". By abuse of notation, we still use A and F
to denote A N Ar(Sch ™) and F N Ar(Schy*?), respectively. Moreover, let L C F' be the set

of smooth morphisms.

10We use a cohomological indexing convention, which is different from [53, Definition 1.2.1.4].
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Definition 3.5.1 (Tate twist). We define a functor
tw: (N(Rind_ior)??) — Cate

such that

(1) the restriction of tw to N(Rindp.ie,)°F coincides with the restriction of the functor
sepacser BO* (3.15) to {Spec Z[O71]} x N(Rindr_or)%?;

(2) tw(—o00) equals AY;

(3) for every object A of Rind_¢;, the image of 0 under the functor tw(—oco — ) is the Tate
twisted sheaf, denoted by Ag(1), is dualizable in the symmetric monoidal co-category
D(Spec Z[O71], \)®.

Let (X, A) be an object of 8chf!;* x Rindg_¢or. We define the following functor
—(1) = (=@ sxAa(1)[2]: D(X,A) = D(X, A),

where sx: X — SpecZ[d™!] is the structure morphism. We know that —(1) is an auto-
equivalence since Ag(1l) is dualizable and s% is monoidal. In general, for d € Z, we define
—(d) to be the (inverse of the, if d < 0) |d|-th iteration of —(1).

We adapt the classical theory of trace maps and the Poincaré duality to the oo-categorical
setting, as follows. Let f:Y — X be a flat morphism in 8ch;"**”, locally of finite presentation,
and such that every geometric fiber has dimension < d. Let A be an object of Rind.tor- In
[3, Exposé xviii, Théoréme 2.9], Deligne constructed the trace map

(3.18) TI‘f = Tl"f)\ T/Ofr>\y< > — Ax,

which turns out to be a morphism of D (X, A). The construction satisfies the following functorial
properties.

Lemma 3.5.2 (Functoriality of trace maps). The trace maps Try for all such f and X are
functorial in the following sense:

(1) For every morphism A — X of Rindg_i.,, the diagram
720 fidy (d

/72:@” N ®k

T2 (( Ofl)\/ ®)\/ )\X

commutes.
2) For every Cartesian diagram
( Y g

of 8chiy*P, the diagram

u™ Tr
u* 720 fidy (d) SN uFAx

\L Trf/ \L

2O f Ay (d) —— > Ax

commutes.
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z—" X
Y
of N(8chi*P) with f (resp. g) flat, locally of finite presentation, and such that every geo-

metric fiber has dimension < d (resp. < e). Then h is flat, locally of finite presentation,
and such that every geometric fiber has dimension < d + e, and the diagram

(8) Consider a 2-cell

720 f, Try (d)
—_—

20 fi(Z%9 Az (e)){d) 2% fiy (d)
:i lm
720 Az (d + €) e Ax
commutes.
Proof. This is [3, Exposé xviii, §2]. O
Let f: Y — X be as above. We have the following 2-cell
D(Y, N
-
D(X, N) fi
f!AY@\_‘\D(X, A)

of Cateo. If we abuse of notation by writing f*(d) for —(d) o f*, then the composition

(3.19) up: fro f{d) = idy(d) @ — = 770 fidy (d) @ — O Ax ® = D idy
is a natural transformation, where idx is the identity functor of D(X, \).

Lemma 3.5.3. If f: Y — X is smooth and of pure relative dimension d, then uy is a counit
transformation. In particular, the functors f*(d) and f' are equivalent.

Proof. This follows from [3, Exposé xviii, Théoréme 3.2.5] and the fact that f' is right adjoint
to fi. O

Remark 3.5.4. Let f: Y — X be a morphism in 8ch9**? that is flat, locally quasi-finite, and
locally of finite presentation. Let A be an object of Rind (see Variant 3.4.6 for the definition
of the enhanced operation map in this setting). In [3, Exposé xvii, Théoréme 6.2.3], Deligne
constructed the trace map
Tl"f: T>Of1>\y — /\X7

which is a morphism of DY (X, \). It coincides with the trace map (3.18) when both are defined,
and satisfies similar functorial properties. Moreover, by [3, Exposé xvii, Proposition 6.2.11], the
map uys: fro f* — idx constructed similarly as (3.19) is a counit transform when f is étale.
Thus, the functors f' and f* are equivalent in this case.

The following proposition will be used in the construction of the enhanced operation map for
quasi-separated schemes.

Proposition 3.5.5 ((Co)homological descent). Let f: X — X1, be a smooth and surjective
morphism of Sch9°*P. Then
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(1) (f,idy) is of universal g pac.se0 EO®-descent (3.9), where X is an arbitrary object of Rind;
(2) (f,idy) is of universal ggacserEO,-codescent (3.16), where A is an arbitrary object of
Rindtor.

See Definition 3.3.1 for the definition of universal (co)descent.

Proof. We first prove the case where f is étale. For (1), let X} be a Cech nerve of f, and
put (D®*)% = gacser EO® o (X)) x {A}). By Remark 2.3.3, we only need to check that
(D*)8. = G o (D®*)%. is a limit diagram, where G is the functor (2.1). This is a special case of
Lemma 3.3.3 by letting U, be the sheaf represented by X, and €, be the whole category. For
(2), we only need to prove that (D)% = ¢ 0 gipac=erEO 0 ((XJ5)? x {A}) is a limit diagram,
where ¢: Pr — Cat, is the natural inclusion, and the functor g ac.seo EO' is the one in (3.17).
By Poincaré duality for étale morphisms recalled in Remark 3.5.4, (D')%. is equivalent to (D*)%.,
which is a limit diagram as we have already seen.

The general case where u is smooth follows from the above case by Lemma 3.3.2(3) (and its
dual version), and the fact that there exists an étale surjective morphism g: Y — X of §ch9®*P
that factorizes through f [31, Corollaire 17.16.3(ii)]. O

4. THE PROGRAM DESCENT

From Remark 3.4.8, we know that all useful information of six operations for 8ch9°*® is
encoded in the maps ggacser EO! (3.8) and g.acsp EO! (3.13) constructed in §3.4. In this
chapter, we develop a program called DESCENT, which is an abstract categorical procedure to
extend the above two maps to larger categories. The extended maps satisfy similar properties as
the original ones. This program will be run in the next chapter to extend our theory successively
to quasi-separated schemes, to algebraic spaces, to Artin stacks, and eventually to higher Deligne—
Mumford and higher Artin stacks.

In §4.1, we describe the program by formalizing the data for 8ch9“*P. In §4.2, we construct
the extension of the maps. In §4.3, we prove the required properties of the extended maps.

4.1. Description. In §3.4, we constructed two maps gac.see EO! (3.8) and g.ac.«r EO! (3.13).
They satisfy certain properties such as descent for smooth morphisms (Proposition 3.5.5). We
would like to extend these maps to maps defined on the oco-category of higher Deligne-Mumford
or higher Artin stacks, satisfying similar properties. We will achieve this in many steps, by first
extending the maps to quasi-separated schemes, and then to algebraic spaces, and then to Artin
stacks, and so on. All the steps are similar to each other. The output of one step provides the
input for the next step. We will think of this as recursively running a program, which we name
DESCENT. In this section, we axiomatize the input and output of this program in an abstract
setting.
Let us start with a toy model.

Proposition 4.1.1. Let (é (6,) be a marked oo-category such that € admits pullbacks and & is
stable under composition and pullback. Let C C C bea full subcategory stable under pullback such
that for every object X of C, there exists a morphism Y — X in & representable in C with Y
in C. Let D be an oo- category such that D°P admits geometric realizations. Let Fun® (€r D) C

Fun(C°? D) (resp. Fun® (G"p D) C Fun(C?, D)) be the full subcategory spanned by functors F'
such that every edge in & = €N E; (resp. in 8) is of F'-descent. Then the restriction map

Fun® (€°P, D) — Fun® (€, D)
s a trivial fibration.

The proof will be given at the end of §4.2.
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Example 4.1.2. Let 8ch® C 8ch be the full subcategory spanned by quasi-separated schemes. It
contains 8ch1°* ag a full subcategory. By Proposition 3.5.5(1), we may apply Proposition 4.1.1
to

C = (N(8ch®)°P x N(Rind)o?)T-p,

€ = (N(8ch®*P)oP x N(Rind)°P)L-op,

D = Cateo,

and the set € consists of edges f that are statically smooth surjective (Definition 3.4.2).

Then we obtain an extension of the map ggacser EO' with larger source (N(8ch®)oP x
N(Rind)P)™.

Now we describe the program in full. We begin by summarizing the categorical properties we
need on the geometric side into the following definition.

Definition 4.1.3. An oco-category C is geometric if it admits small coproducts and pullbacks
such that
(1) Coproducts are disjoint: every coCartesian diagram

) ——X

]

Y —X][Y

is also Cartesian, where () denotes an initial object of C.
(2) Coproducts are universal: For a small collection of Cartesian diagrams

Y —Y

|

Xi*>X,

1 € I, the diagram
Hie/Yi —Y

|

[Lic; Xi — X,
is also Cartesian.

Remark 4.1.4. We have the following remarks about geometric categories.
(1) Let € be geometric. Then a small coproduct of Cartesian diagrams of € is again Cartesian.
(2) The oco-categories N(8ch9®*°P) N(Sch®), N(Esp), N(Chp), Chp* 4" and €hp*PM (k > 0)
appearing in this article are all geometric.

We now describe the input and the output of the program. The input has three parts: 0, I,
and II. The output has two parts: I and II. We refer the reader to Example 4.1.12 for a typical
example.

Input 0. We are given
e A 5-marked co-category (€, &, &, ", &, F), a full subcategory € C €, and a morphism
s — s of (—1)-truncated objects of € [52, Definition 5.5.6.1].
e For each d € Z U {—o0}, a subset &/ of €.
e A sequence of inclusions of co-categories £ C L' C L.
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e A function dim*: F — Z U {—o0, +00}.

Put & =€ NCy, & =& NCy, & :=8"NCy, & :==EJNECy (d € ZU{—00}), & = & NCy,
and F := F N Cy. Let € (resp. G’ €”, and ") be the full subcategory of € (resp. €, €, and @)
spanned by those objects that admit morphisms to s’ (resp. s’, s”, and s”). Put &' = ff"ﬁ ¢} and
F := FN €). They satisfy

(1) C is geometric, and the inclusion € C € is stable under finite limits. Moreover, for every
small coproduct X = [],.; X; in €, X belongs to € if and only if X; belongs to € for all
1€l

(2) L" C L' and L' C L are full subcategories.

(3) &, ¢&,¢&" St,EF are stable under composition, pullback and small coproducts; and & C
8” Cé C7T.

(4) For every object X of €, there exists an edge f: Y — X in & N &’ representable in @
with Y in C. Such an edge f is called an atlas for X.

(5) For every edge f: Y — X in &”, there exist 2-simplices

7N,

Yo— - x

(4.1)

of € with f, in é&' for d € Z, such that the edges iq exhibit Y as the coproduct [[ ., Ya.
(6) For every d € Z U {—oc}, we have é’d’ C &”, that ég is stable under pullback and small
coproducts, and that &”__ is the set of edges whose source is an initial object. For
distinct integers d and e, we have &7 N &Y = &”
(7) For every small set I and every pair of objects X and Y of é, the morphisms X — X [[Y
and [[; X — X are in &lJ. For every 2-cell

(4.2) Y

of € with f in & and g in £”, where d and e are integers, h is in ég+e.
(8) The function dim™ satisfies the following conditions.
(a) dim™(f) = —oc if and only if f is in £”
(b) The restriction of dim™ to &/ — € __ is of constant value d.
(¢) For every 2-cell (4.2) in C with edges in F, we have dim™ (h) < dim™(f) 4+ dim™ (g),
and that the equality holds when ¢ belongs to &N &”.
(d) For every Cartesian diagram

W —sZ7Z
(I\L ip
f
Y —X

in € with f (and hence g) in F, we have dim™(g) < dim™(f), and equality holds
when p belongs to .
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(e) For every edge f: Y — X in F and every small collection

Y
7N
hi

Zi— o X

of 2-simplices with g; in égl such that the morphism [[..; Z; — Y is in &, we have
dim* (£) = sup,e, {dim* (hy) — d;}.

(9) We have &' = .

icl

Remark 4.1.5. In Input 0, by (7) and (8c,d,e), for every small collection {Y; ELN X bier of edges
in F, we have dim™ ([[;; fi) = sup;e, {dim™* (f;)}.
Input I. Input I consists of two maps as follows.

e The first abstract operation map:
eEO!: (€7 x £oP)I 5 Cat,.
e The second abstract operation map:
e BOM: 65 1) (€7 x L/P)hoP)Gt ) — Catu.

Input I is subject to the following properties:

P0: Monoidal symmetry. The functor s EO! is a lax Cartesian structure, and the induced functor
eBEO® := (,EO!)® factorizes through CAlg(@atoo)Ilgmst’Cl (see Remark 2.3.6).
P1: Disjointness. The map «EO® sends small coproducts to products.

P2: Compatibility. The restrictions of cEO! and o/ EO! to (€/°P x £'°P)! are equivalent functors.

Before stating the remaining properties, we have to fix some notation. Similar to the con-
struction of (3.14), we obtain a map

CIEOT: 5;7{2}8{;?"%; X L/Op — iprl“t.
from o EO'. Similar to the construction of (3.15) and (3.16), we obtain maps

BO™: CP x L% — Prly, o EO,: € x L'P — Prly.

sto

Moreover, we will use similar notation as in Notation 3.4.7 for the image of 0 and 1-cells under
above maps, after replacing 8ch9“*®" (resp. Rind) by € (resp. £). Now we are ready to state the
remaining properties.

P3: Conservativeness. If f: Y — X belongs to &g, then f*: D(X, ) — D(Y, ) is conservative
for every object A of L.

P4: Descent. Let f be a morphism of C (resp. €') and A an object of £ (resp. £'). If f
belongs to €N E” (resp. EsNE” N EY), then (f,idy) is of universal o EO®-descent (resp.
o EO,-codescent).

P5: Adjointability for &'. Let

w—2Ls2z

qi ip

f
Y—X
be a Cartesian diagram of €’ with f in &', and X an object of £’. Then
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(1) The square

D(Z,\) <2— D(X, \)

b

D(W, \) <— D(Y, A)

has a right adjoint which is a square of PrZ.
(2) If p is also in &', then the square

D(X, ) <2 DV, \)

|k

D(Z,\) <Z— D(W, \)

is right adjointable.
P5Ps: Adjointability for €”. We have the same statement as in (P5) after replacing €’ by €”,
& by &”, and L’ by L".
Input II. Input II consists of the following data.

e A functor tw: (£"°P)? — Qat., satisfying that

— the restriction of tw to £”°P coincides with the restriction of cEO* to {s”} x L£"°P;

— tw(—00) equals AY;

— for every object A\ of Rindr.ior, if we denote the image of 0 under the functor
tw(—oo — A): AY — D(s”;\) by A(1), then it is dualizable in the symmetric
monoidal co-category D(s”, \)®.

e A t-structure on D(X, \) for every object X of € and every object A of £.

o (Trace map for &) A map Try: 720 fidy (d) — Ax for every edge f: Y — X in & NEY,
every integer d > dim™(f), and every object A of £”. Here, Ax is a unit object of the
monoidal co-category D(X, A) and similarly for Ay; —(d) is defined in the same way as
in Definition 3.5.1.

e (Trace map for &) A map Try: 72°fidy — Ax for every edge f: Y — X in & NC} and
every object A of £’, which coincides with the one above for f € & N €Y.

Input II is subject to the following properties.

P6: t-structure. Let A be an arbitrary object of £. We have
(1) For every object X of €, we have A\x € DY(X,\).
(2) If A belongs to £” and X is an object of €, then the auto-equivalence — ® s% A(1)
of D(X, \) is t-exact.
(3) For every object X of C, the t-structure on D(X, A) is accessible, right complete,
and DS™°°(X, \) :=),, DS™™(X, \) consists of zero objects.
(4) For every morphism f: Y — X of C, the functor f*: D(X,\) — D(Y, ) is t-exact.
P7: Poincaré duality for £”. We have
(1) For every f in & N €/, every integer d > dim™(f), and every object A of £”,
the source of the trace map Tr; belongs to the heart DY (X, A). Moreover, Try is
functorial in the same way as in Lemma 3.5.2. See Remark 4.1.6 below for more
details.
(2) For every f in €7 N CY, and every object A of £”, the map uy: fio f*(d) — idx,
induced by the trace map Try: 720 fidy (d) — Ax similarly as (3.19), is a counit
transformation. Here idx is the identity functor of D(X, \).
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P7bS: Poincaré duality for &. We have the same statement as in (P7) after letting d = 0, and
replacing €” by €', & by &', and £L" by L.

Remark 4.1.6. In (P7)(1) above, the trace maps Try for all such f and A are functorial in the

following sense:
(1) For every morphism A — X of £”, the diagram

20 fidy (d

/ Trf>\
7'>O(Trf NG ®)\/ Ax)

O((T2° Xy (d)) ®@xr, Ax)

-
commutes.
(2) For every Cartesian diagram
, I /
Y — X
L,
Y —X
of €”, the diagram
*Tr
W20 fdy (d) ——— = w Ay
L

comimutes.

(3) Consider a 2-cell
z—n X

d and dim™(g) < e. In particular, we

of " with f,g € & N €Y such that dim™(f)
€/ and dim™(h) < d + e. Then the diagram

have h € & N CY
720 (720 g () ) LD 20 5ty
:i l”[‘rf
Try, )\X

2% Az (d + e)

commutes.
Remark 4.1.7. We have the following remarks concerning input
(1) (P0) and (P4) imply the following: If f is an edge of (C? x L°P)1°P that statically
belongs to £, N E”, then it is of universal ;EO'-descent.

(2) (P4) implies that (P3) holds for f € E,NE”
(3) Ifd > dim™ (f), then the trace map Try is not interesting because its source 72° fily (d) is

B
K
a zero object. We have included such maps in the data in order to state the functoriality

as in Remark 4.1.6 more conveniently.
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4) We extend the trace map to morphisms f: Y — X in & N €} endowed with 2-simplices
1
(4.1) satisfying dim™ (f4) < d and such that the morphisms 44 exhibit Y as [, Ya. For
every object A of £, the map

DY, A) = [[ D(¥a, ),
deZ
induced by ig4 is an equivalence by (P1). We write —(dim™): D(Y, \) — D(Y, \) for the
product of (—(d): D(Yq,A) = D(Ya, A))acz. Since Ay ~ @,y ia)y,, the maps Try,
induce a map Try: 720 fidy <dim+) — Ax. Moreover,the trace map is functorial in the
sense that an analogue of Remark 4.1.6 holds.

(5) (P7)(2) still holds for morphisms f: Y — X in € N €{. For such morphisms, the
2-simplices in Input 0(5) are unique up to equivalence by Input 0(6). We write
—(dim f): D(Y,A) = D(Y, A) for the product of (—{(d): D(Yy,\) = D(Yy, A))aecz. Then,
(P7)(2) for the morphisms f; implies that the map uy: fio f*(dim f) — idx induced by
the trace map Try: 729 Ay (d) — Ax is a counit transformation.

The output has two parts: I & II.
Output I. Output I consists of two maps as follows.

e The first abstract operation map:
sEO': (G x £oP) — Cato

extending cEOL.
e The second abstract operation map:

G EOM: 67 1) (€77 x Lron)lhoryert — eat,,

extending e/EOH.
Output II. Output II consists of the following data, all extending the existed data in Input II.
e A functor tw: (£"°P)? — Caty, same as in Input II.
e A t-structure on D(X, \) for every object X of € and every object X of £.
e (Trace map for &) A map Try: 72%fidy (d) — Ax for every edge f: Y — X in & NECY,
every integer d > dim™ (f), and every object \ of L.
e (Trace map for &) A map Tr: 720 fidy — Ay for every edge f: Y — X in & N €} and
every object A of £, which coincides with the one above for f € & N €Y.
We introduce properties (P0) through (P7) for Output I and II by replacing €', € and
(€, &, &,8". &, F) by &, C” and (C, &, &', ", &, F), respectively. The following theorem shows
how our program works.

Theorem 4.1.8. Fix an Input 0. Then
(1) Every Input I satisfying (P0) through (P5°) can be extended to an Output I satisfying
(P0) through (P5°%).
(2) For given Input I, II satisfying (P0) through (P7°%) and given Output I extending Input
I and satisfying (P0) through (P5°%), there exists an Output II extending Input II and
satisfying (P6), (P7), (P7"%).

Output T will be accomplished in §4.2. Output II and the proof of properties (P1) through
(P7%) will be accomplished in §4.3.

Variant 4.1.9. Let us introduce a variant of DESCENT. In Input 0, we let & = &”, s’ — s
be a degenerate edge, L' = L”, and ignore (9). In Input II (resp. Output II), we also ignore
the trace map for & (resp. &) and property (P7"). In particular, (P5) and (P5"*) coincide.
Theorem 4.1.8 for this variant still holds and will be applied to (higher) Artin stacks.
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Remark 4.1.10. We have the following remarks concerning Theorem 4.1.8.

(1)

(2)

If the only goal is to extend the first and second operation maps, the statement of
Theorem 4.1.8(1) can be made more compact: every Input I satisfying properties (P0),
(P2), (P4), and (P5) can be extended to an Output I satisfying (P0), (P2), (P4), and
(P5). This will follow from our proof of Theorem 4.1.8 in this chapter.

The Output I in Theorem 4.1.8(1) is unique up to equivalence. More precisely, we can
define a simplicial set K classifying those Input I that satisfy (P2) and (P4). The vertices
of K are triples (¢EO', cEO™, h), where h is the equivalence in (P2). Similarly, let K
be the simplicial set classifying those Output II that satisfy (P2) and (P4). Then the
restriction map K — K satisfies the right lifting property with respect to dA™ C A™ for
all n > 1. One can show this by adapting our proof of Theorem 4.1.8. Moreover, in all
the above, h can be taken to be the identity without loss of generality.

The Output II in Theorem 4.1.8(2) is also unique up to equivalence. More precisely,
let us fix an Output I extending Input I and satisfying (P2) and (P4). Note that the
functor tw remains the same. Fix an assignment of t-structures for the Input satisfying
(P6). Then there exists a unique extension to the Output satisfying (P6). Moreover,
for every assignment of traces for the Input satisfying (P7) (resp. (P7%)), there exists a
unique extension to the Output satisfying (P7) (resp. (P7"*)). Note that the trace map
is defined in the heart, so that no homotopy issue arises.

Definition 4.1.11. For a morphism f: Y — X locally of finite type between algebraic spaces,
we define the upper relative dimension of f to be

sup{dim (Y x x SpecQ)} € Z U {—o0, +o0}

[1, 04N6], where the supremum is taken over all geometric points Spec2 — X. We adopt the
convention that the empty scheme has dimension —oc.

Example 4.1.12. The initial input for DESCENT is the following;:

€= N(8ch®), where Sch® C 8ch is the full subcategory spanned by quasi-separated
schemes as in Example 4.1.2. It is geometric and admits SpecZ as a final object.

€ = N(8ch®*P) and s” — s’ is the unique morphism SpecZ[OJ~!] — SpecZ. In
particular, @ = € and €’ = €.

&, is the set of surjective morphisms.

&’ is the set of étale morphisms.

& is the set of smooth morphisms.

ég is the set of smooth morphisms of pure relative dimension d.

&, is the set of morphisms that are flat and locally of finite presentation.

F is the set of morphisms locally of finite type.

L =N(Rind)°P, £’ = N(Rindy, )%, and L” = N(Rind_ior ) °P.

dim™ is the (function of) upper relative dimension (Definition 4.1.11).

oEO! is (3.8), and o EO' is (3.13).

tw is defined in Definition 3.5.1.

D(X, A) is endowed with its usual t-structure recalled at the beginning of §3.5.

The trace maps are the classical ones (3.18); see also Remark 3.5.4.

Properties (P0) through (P7") are satisfied as follows:
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(P5) This follows from Lemma 4.1.13 below. Part (1) of (P5), namely the étale base change,
is trivial.

) This follows from Lemma 4.1.13 below. Part (1) of (P5#) is the smooth base change.

) Part (3) follows from [53, Proposition 1.3.5.21]. The rest follows from construction.
(P7) This has been recalled in Lemma 3.5.2 and Lemma 3.5.3.

i) This has been recalled in Remark 3.5.4.

Lemma 4.1.13. Assume (P7). Then (P5) holds. In fact, we have the stronger result that
part (2) of (P5) holds without the assumption that p is also in &'. The similar statements hold
concerning (P7°) and (P5%*).

Proof. We denote by p, (resp. ¢.) a right adjoint of p* (resp. ¢*) and by f' (resp. ¢') a right
adjoint of f (resp. gi).
By (P7) or (P7"%), f* and g* have left adjoints. Moreover, the diagram

(4.3)

[ ps(dim f) ———— g.g*(dim f) gxg*(dim f)

l | |

AL pe(dim f) — [ figug™ (dim f) —— f'p.gig* (dim f) —— q.g'gig* (dim [)

lTrf Try, i Try \L

f'ps f'ps - 4+9'

R

is commutative up to homotopy. It follows that the top horizontal arrow is an equivalence.
Since the diagram

q* f*(dim f) ¢* f*(dim f) —=— g*p*(dim f)

| i

~( ¢ fUAif(dim f) — ¢'p* fif (dim f) —— ¢'gi¢* f*(dim f) — ¢'g1g*p* (dim f)

Trfi iTrf Trgi

q*f! glp* g!p*

R

is commutative up to homotopy, the bottom horizontal arrow is an equivalence. O

4.2. Construction. The goal of this subsection is to construct the maps éEOI and é,EOII in
Output I in §4.1. We will construct Output IT and check the properties (P0) — (P7") in the
next section.

Let us start from the construction of second abstract operation map é,EOH. The first one
éEOI will be constructed at the end of this section, after the proof of Proposition 4.1.1.

Let R € F be the subset of morphisms that are representable in €’. We have successive
inclusions

3,{2}((6/@ X L/Op)H’OP)?fZH - 53,{2}((@0[) X L/OP)H’OP)%,ZH

C 85,10y (@7 s £romhomyzrt,

We proceed in two steps.
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Step 1. We first extend G/EOH to the map gEOII with the new source
5.0y (@7 x Loylor)gprs
An n-cell of the above source is given by a functor
o A" x (An)op N (é/op % L/op)H,op
We define Cov(o) to be the full subcategory of
Fun(A™ x (A")% x N(A )P, (€' x L)) X g (s (amyomx ([ 1]}, (@rorx.cromyitony {0}

spanned by functors o©: A™ x (A™) x N(A, )% — (C'°P x £'%P)LoP such that
e for every 0 < j < n, the restriction ¢® | A7) x N(Afo)"p, regarded as an edge of
(CroP x LroP)op g gtatically an atlas (see Definition 3.4.2 and Input 0(4));
o 0¥ is a right Kan extension of 0© | A{"} x (A7) x N(A$?)? U A™ x (A™)°P x {[-1]}
along the obvious inclusion.
In particular, for every object (i,7) of A™ x (A™)°P, the restriction 0¥ | A7) x N(A,)%P is a
Cech nerve of the restriction o© | A%9) x N(AS?)P.
The oco-category Cov(o) is nonempty by Input 0(4), and admits product of two objects. Indeed,
for every pair of objects o and ¢ of Cov(c), the assignment

(6,5, [K]) = 01 (i, 5, [K]) %009 023, J [K])

induces a product of ¢ and 09 by Lemma 2.3.5. Therefore, by Lemma 2.1.1, Cov(0) is a weakly
contractible Kan complex.
Since atlases are representable in € by Input 0(4), by restriction, Cov(o) induces a functor

Cov(o) = Fun(N(A) x A™ x (A™)%P (Q/°P x L'oP)Top),
which induces a map
Cov(o)?? — Fun(N(A),Fun(A”,65’{2}((8"”3 X L’OP)H’OP)‘:}T,;H)).
Composing with the map e/EOH, we obtain a functor
@(0): Cov(c)?? — Fun(N(A), Fun(A”, Cats)).

Let X C Fun(N(A.),Fun(A™, Caty)) be the full subcategory spanned by those functors
F: N(A,) — Fun(A", Caty,) that are right Kan extensions of F'|N(A). Consider the following
diagram

N(o) Cov(o)°P
res]¢(o) \Ld’(”)
Fun(A™, Categ) ~—2— K ——1 > Fun(N(A), Fun(A™, Cate))

in which the right square is Cartesian, and res, is the restriction to {[—1]}. Put

®(0) :=resg oresid(o): N(o) — Fun(A", Cate).
It is easy to see that the above process is functorial so that the collection of ®(c) defines a
morphism ® of the category

@/op x glopyll,opycart )°F
(e X )= )92,,111

A,.
(Seta) ‘"2t

Lemma 4.2.1. The map ®(0) takes values in Map((A™)?, Catf ).
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Proof. Let X_; be an object of (€7 x £/°P)1:oP and Cov(X_;) the full subcategory of
Fun(N(A+)°p, (é/op X L/op)H,OP) XFun({[—l]},(é/UPXL’OP)'—[=OP) {Xfl}

spanned by functors X, such that the edge Xo — X_; is statically an atlas and X, is a Cech
nerve of Xg — X_;. By (P2), it suffices to show that for every morphism f of Cov(X_1),
considered as a functor f: A x N(A )P — (€"°P x £'°P)1hoP and every right Kan extension F
of eEOY o (f | A x N(A)°P)°P_ the morphism F' | (A x {[~1]})°P is an equivalence in Cate.

In fact, let f: X0 — X! be a morphism of Cov(X_1). Let X2 be an object of Cov(X_1).
Then we have a diagram

X0 x x2 2o x0

.

Here products are taken in Cov(X_1). Thus, it suffices to show the assertion for the projection
X x X, — X/, where X, and X are objects of Cov(X_1).
Let Yoo: N(A L) x N(A4 )% — € be an augmented bisimplicial object of €’ such that

L] Yfl. = X:, Y.,l = X..

e Y,, is a right Kan extension of Y_1, UY, 1.
Let §: [1] x A%” — A% x AP be the functor sending (0, [n]) to ([n], [n]) and (1, [n]) to ([—1], [n]).
It suffices to show the assertion for Y,e oN(d), regarded as a morphism of Cov(X_;). This follows
from Lemma 4.2.2 below by taking p to be Catoec — * and ¢*® to be a right Kan extension of
eEO0 (Yoo [IN(A 1 )P)°P. Here, A, C A, x A is the full subcategory spanned by all objects
except the initial one. Assumptions (2) and (3) of Lemma 4.2.2 are satisfied thanks to (P0) and
(P4); see Remark 4.1.7(1). O

Lemma 4.2.2. Let p: € — D be a categorical fibration of oco-categories. Let ¢*®: N(Ay) x
N(A.) — C be an augmented bicosimplicial object of C. For n > —1, put ¢™® = c** | {[n]} x
N(AL) and ¢*™ == c** | N(A ) x {[n]}, respectively. Assume that
(a) c*® is a p-limit [52, Definition 4.3.1.1] of ¢*® | N(A44), where Ay C Ay X AL is the
full subcategory spanned by all objects except the initial one.
(b) For everyn >0, c™* is a p-limit of ¢™* | N(A).
(¢) For every n > 0, ¢*™ is a p-limit of ¢*™ | N(A).
Then
(1) c¢=1* is a p-limit of c=1* | {[-1]} x N(A).
(2) c¢*~ 1 is a p-limit of c*~1 | N(A) x {[-1]}.
(3) ¢** | N(A{)diag @5 @ p-limit of c¢*® | N(A)diag, where N(AL)daiag € N(A4) X N(AL) is
the image of the diagonal inclusion diag: N(At) — N(A4) x N(A4) and N(A)giag 15
defined similarly.

Proof. For (1), we apply (the dual version of) [52, Proposition 4.3.2.8] to p and N(A; x A) C
N(A.;) € N(AL x A}). By (the dual version of) [52, Proposition 4.3.2.9] and assumption
(b), the restriction ¢*® | N(A x A, ) is a p-right Kan extension of the restriction ¢*® | N(A x A)
[52, Definition 4.3.2.2]. Tt follows that ¢*® |N(A ) is a p-right Kan extension of ¢*® [N(A L x A).
By assumption (a), ¢*® is a p-right Kan extension of ¢*® | N(A,;). Therefore, ¢*® is a p-right
Kan extension of ¢** | N(A, x A). By [52, Proposition 4.3.2.9] again, ¢~1® is a p-limit of
e {[-1]} x N(A).

For (2), it follows from conclusion (1) by symmetry.
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For (3), we view (A x A)< as a full subcategory of A, x A, by sending the cone point to
the initial object. By [52, Lemma 4.3.2.7], we find that ¢** | (A x A)? is a p-limit diagram.
By [52, Lemma 5.5.8.4], the simplicial set N(A)°P is sifted [52, Definition 5.5.8.1], that is, the
diagonal map N(A)°? — N(A)°? x N(A)°? is cofinal. Therefore, ¢*® | N(A 4 )diag is a p-limit of
c*® | N(A)diag- O

Since res; is a trivial fibration by [52, Proposition 4.3.2.15], the simplicial set N(o) is weakly
contractible. By Lemma 4.2.1, we can apply Proposition 1.2.15 to

K = 83,05y (€7 x £/or)lomgnt - R — 55 o (€7 x Lonybomyet g K K,
and the section v given by . EO!. This extends .. EOY to a ma
g Y e e P
§EOII: 5;{2}((63’01’ X L"’I’)H’Op)gzagn — Cato.
Step 2. Now we are going to extend REOM to the map 5 EO™ with the new source
e e

5423 (€77 x grepythoryeart

An n-cell of the above source is given by a functor
c: A" x (An)op N (é/op % L/op)H,op
We define Kov(s) to be the full subcategory of
Fun(A™ x (A™)% x N(A L), (€ x L)) X g anse (amyor s ([ 1]} (&rom x cromyony (S}
spanned by functors ¢%: A” x (A™)%P x N(A )P — (€/°P x £/°P)1:oP such that
e for every 0 < i < n, the restriction ¢% | AG0) x N(Aio)(’p, regarded as an edge of
(CroP x glor)op statically belongs to €N &' NR;
e ¢¥is a right Kan extension of ¢ | A" x (A{0})er x N(Afo)"p UA™ x (A™)°P x {[-1]}
along the obvious inclusion; R
e the restriction ¢° | A" x (A{9})°P x {[0]} corresponds to an n-cell of (€’°P x L/°P)oP)y,.
In particular, for every object (4,7) of A™ x (A™)°P, the restriction ¢® | A7) x N(A ;)P is a Cech
nerve of the restriction ¢° | A7) x N(Afo)"p. Moreover, the restriction ¢® | A™ x (A™)°P x {[0]}
corresponds to an n-cell of 4, {2}(((3,’0” x Lrop)thopycart
Similar to Cov(c), the co-category Kov(s) is nonempty and admits product of two objects.

Therefore, by Lemma 2.1.1, Kov(c) is a weakly contractible Kan complex.
The restriction functor

Kov(s) = Fun(N(A)P x A" x (A™)°P, (€' x £'oP)lep)
induces a map
Kov(s) = Fun(N(A)°P, Fun(A", 637{2}((6"’” X L"’p)u’of’)&?‘f;ll)).
Composing with the map §E0H, we obtain a functor
?(¢): Kov(o) — Fun(N(A)°? Fun(A", Caty)).

Let X' C Fun(N(A;)°?, Fun(A", Cats,)) be the full subcategory spanned by those functors
F: N(A1)° — Fun(A™, Caty,) that are left Kan extensions of F|N(A)°. Consider the following
diagram

N(s) Kov(s)

res] ¢(s) i‘i’(?)

Fun(A™, Caty,) Fun(N(A)°, Fun(A™, Cate))
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in which the right square is Cartesian, and res, is the restriction to {[—1]}. Put
D(s) :=resg oresid(s): N(¢) — Fun(A"™, Cate).

It is easy to see that the above process is functorial so that the collection of ®() defines a
morphism ® of the category

A . . v )P
5* @/op x glopyll,opycart
2y (BroPxcrop)hopyene

(
(Seta) 22
Lemma 4.2.3. The map ®(s) takes values in Map®((A™)’, Cat).

Proof. Let Xo: N(A )P — (€ x £/°P)1:oP be an augmented simplicial object that is a Cech
nerve of f: Xo — X_; such that f statically belongs to & N & N R. By the construction
of ®(s), it suffices to show that R o X, is a left Kan extension of R o X, | N(A)°, where
R= g?EOII | ((€oP x £'°P):oP) g is the restriction along direction 1.

Choose an object X of Cov(X_1) and form a bisimplicial object Yee: N(A ;)P x N(A ;)P —
(€P x L£'°P)1Lop a5 in the proof of Lemma 4.2.1, which is static. Applying gEOII t0 Yee and
by adjunction, we obtain a diagram x3: N(A;)°? x N(A;) — Cate. By the construction of
§E0H, we have that x? is a limit diagram for n > —1. By (P4), xZ is a colimit diagram
for n > 0. Therefore, by (P5)(2) and [53, Proposition 4.7.4.19] applied to the restriction x§ |
N(A; )% x N(Ag 1), we have that Ro X, = x, ! is a colimit diagram. In the last sentence, we
used [52, Lemma 6.5.3.7] twice. O

Since res; is a trivial fibration by [52, Proposition 4.3.2.15], the simplicial set N(c) is weakly
contractible. By Lemma 4.2.3, we can apply Proposition 1.2.15 to

K = 83 1) (B x £/oP)lom)@rt KT = 5 o (€7 x L) 1ongty g K K,

and the section v given by §EOII. This extends §3EOII to a map

e BOM: 65 o) (€7 x L/oP)bopyart  — Cate,

7 all

as demanded.
Now we prove Proposition 4.1.1, which will be applied to construct the first abstract operation
map éEOI in Output I.

Proof of Proposition 4.1.1. The proof is similar to Step 1 above. Consider the diagram

A" —% 5 Funé(éof’, D)

7
-
e
-
-

ATL /T Fung (COP, D)

Let o: (A™)° — € be an m-cell of C%?. We denote by Cov(c) the full subcategory of
Fun((A™) x N(A4)%, C) X Fun((Am)or x {[-1]},8) 10}

spanned by Cech nerves 0%: (A™)% x N(A4 ) — € such that ¢© | (A™)% x N(A)°P factorizes
through €, and that ¢°| AL} x N(Af_o)"p belongs to & and is representable in € for all 0 < j < m.
Since Cov (o) admits product of two objects, it is a contractible Kan complex by Lemma 2.1.1.

Let X C Fun(N(A ), Fun(A™, D)) be the full subcategories spanned by augmented cosimpli-
cial objects XJ that are right Kan extensions of X} | N(A). By [52, Proposition 4.3.2.15], the
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restriction map K — Fun(N(A), Fun(A™, D)) is a trivial fibration. We have a diagram

Cov(o)°P o
e T

K ————— Fun(A™, Fun(N(A) x A™, D))

N |

Fun(0A™, K) —— Fun(9A™, Fun(N(A) x A™, D))
where the square is Cartesian, « is induced by F, and f is induced by G. Consider the diagram

N(o) —— Cov(o)°P

res”{d)l \Ld)

resi

/
— X,

resg

Fun(A™, Fun(A™, D)) <—— Fun(A", X)
where the square is Cartesian and ress is the restriction to {[—1]}. Since res; is a trivial fibration,
N(o) is a contractible Kan complex.

Put ®(o) := resy o resjp. The construction is functorial in ¢ in the sense that it
defines a morphism ® of the category (Seta)(@eer)”.  Moreover, ®(o) takes values in
Map®((A™)?, Fun(A", D)), In fact, this is trivial for n > 0 and the proof of Lemma 4.2.1 can
be easily adapted to treat the case n = 0. Applying Corollary 1.2.9 to ® and a = G, we obtain
a lifting F: A" — Fun(C°, D) of F extending G.

It remains to show that F factorizes through Fun®(€°?, D). This is trivial for n > 0. For
n = 0, we need to show that every morphism f:Y — X in & is of F-descent, where we regard
F as a functor €? — D. Let u: X’ — X be a morphism in & with X’ in €, and v the composite
morphism Y/ 25 Y xx X’ — Y of the pullback of u and a morphism w in & with Y’ in €. This
provides a diagram

Y/ le Xl

I

Y —X

where u and v are in € and f’ belongs to &. Then f’ and u are of F-descent by construction. It
follows that f is of F-descent by Lemma 3.3.2(3,4). O

Thanks to (P0) and (P4) (see Remark 4.1.7(1)), we may apply Proposition 4.1.1 to

& = (& x Loyor,
€ = (CoP x Lor)op,

D = Cateo, B 5 -
and the set & consists of edges f that statically belong to &, N E”,

and obtain an extension of the functor EO! to a functor
cEO': (G x £P)! — Cato

as demanded.



ENHANCED SIX OPERATIONS AND BASE CHANGE THEOREM 113

4.3. Properties. We construct Output II and prove that Output I and Output II satisfy all
required properties.

Lemma 4.3.1 (P0). The functor éEOI is a lax Cartesian structure, and the induced functor
cEO® = (;EON® factorizes through CAlg(Cats )k

pr,st,cl®

Proof. This follows from the construction of éEOI as the properties in (P0) are preserved under
limits. O

Lemma 4.3.2 (P1). The map éEO® sends small coproducts to products.

Proof. Since € is geometric (Definition 4.1.3), small coproducts commute with pullbacks. There-
fore, forming Cech nerves commutes with the such coproducts. Then the lemma follows from
the construction of ;EO® and the property (P1) for ;EO®. O

Lemma 4.3.3 (P2). The restrictions of ;EO" and 5 EOM to the subcategory (€oP x £'P)1 gre
equivalent functors.

Proof. By Proposition 4.1.1 and the original (P2), it suffices to show that the restriction F' ==
& EOM | (€P x £'°P)I helongs to Fun® (€9 x £'°P)1 Cat.,) where set & consists of edges f of
that statically belong to & N E” N €). In other words, it suffices to show that f is of F-descent.

By construction, the assertions are true if f is statically an atlas. Moreover, by the original
(P4), the assertions are also true if f is a morphism of €’. In the general case, consider a diagram

f/

Y/ o X/

Y *f> X
where u is an atlas and f’ belongs to & N &”. For example, we can take v to be an atlas of
Y xx X’. The proposition then follows from Lemma 3.3.2(3,4). O

Lemma 4.3.4 (P3). If f: Y — X belongs to &, then f*: D(X,\) — D(Y,\) is conservative
for every object A of L.

Proof. We may put f into the following diagram

Y/ fH X/

f
Y —X

where v is an atlas, Y belongs to € and f’ belongs to &. Then we only need to show that v* o f*,
which is equivalent to f* o u*, is conservative. By [53, Theorem 4.7.5.2(3)], u* is conservative,
and f’* is also conservative by the original (P3). Therefore, f* is conservative. ]

Proposition 4.3.5 (P4). Let f be a morphism of C°P (resp. é’)
(1) If f belongs to EsNE, then (f,idy) is of universal ;EO®-descent for every object A of
L.
(2) If f belongs to E,NE" NEC), then (f,idy) is of universal o/ EO,-codescent for every object
Aof L.

Proof. Part (1) follows from the construction of ;EO!. Part (2) follows from the same argument
as in Lemma 4.3.3. O
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We will only check (P5), and (P5#) follows in the same way.
W A
qi ip
f
Y —X

be a Cartesian diagram of €' with f in &', and X an object of L'. Then
(1) The square

Proposition 4.3.6 (P5). Let

g
—_—

(4.4) D(Z,\) <2— D(X, \)

1)
D(W,A) =——D(Y, )

has a right adjoint which is a square of Pri.
(2) If p is also in &', the square

(4.5) D(X,N) < DV, \)

|k

D(Z,\) <Z— D(W, \)
is right adjointable.
We first prove a technical lemma.

Lemma 4.3.7. Let K be a simplicial set, and p: K — Fun(A! x Al Cato.) a diagram of squares
of co-categories. We view p as a functor K x A1 x Al — Caty,. If for every edge o: Al — K x A,
the induced square po (o x ida1): Al x At — Caty, is right adjointable (resp. left adjointable),
then the limit square @(p) is Tight adjointable (resp. left adjointable).

Recall from the remark following Proposition 2.2.4 that when visualizing squares, we adopt
the convention that direction 1 is vertical and direction 2 is horizontal.

Proof. Let us prove the right adjointable case, the proof of the other case being essentially the
same. The assumption allows us to view p as a functor

P+ K — Fun(A!, Fun®A9(A! Caty,))

[53, Definition 4.7.4.16]. By [53, Corollary 4.7.4.18] and (the dual version of) [52, Corollary
5.1.2.3], the oo-category Fun(A', Fun®*9(A!, Cat.,)) admits all limits and these limits are pre-
served by the inclusion

Fun(A!, Fun®™ (A, Cato,)) C Fun(Al, Fun(Al, Caty,)).
Therefore, the limit square 1&1([]) is equivalent to @(p’) which is right adjointable. O

Proof of Proposition 4.3.6. For (1), it is clear from the construction and the original (P5)(1)
that both f* and g* admit left adjoints. Therefore, we only need to show that (4.4) is right
adjointable. By Lemma 4.3.7, we may assume that f belongs to €. Then it reduces to show
that the transpose of (4.4) is left adjointable, which allows us to assume that p is a morphism of
€', again by Lemma 4.3.7. Then it follows from the original (P5)(1).
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For (2), by Lemma 4.3.7, we may assume that p belongs to . Then p* and ¢* admit left
adjoints. Therefore, we only need to prove that the transpose of (4.5) is left adjointable, which
allows us to assume that f is also in &', again by Lemma 4.3.7. Then it follows from the original
(P5)(2). |

Next we define the t-structure. Let X be an object of € and let A be an object of £. For
an atlas f: Xo — X, we denote by DF’(X,\) € D(X, \) (resp. D7°(X,\) € D(X,N)) the full
subcategory spanned by complexes K such that f*K belongs to DS(X(, \) (resp. D=9(Xy, \)).

Lemma 4.3.8. We have
(1) The pair of subcategories (D?O(X7 A), D7
SO

J% determine a t-structure on D(X, ).
(2) The pair of subcategories (Dfo( ), ‘D?O(
>

X, )\
X, )\

In what follows, we will write (DS?(X,\), DZ%(X, \)) for (D?O(X, A), CD?O(X, A)) for an ar-
bitrary atlas f. Moreover, if X is an object of €, then the new t-structure coincides with the old
one since idx : X — X is an atlas.

Proof. For (1), let fo: Xo — X be a Cech nerve of fy = f. We need to check the axioms of
[53, Definition 1.2.1.1]. To check axiom (1), let K be an object of @?0()(, A) and L an object
of @?I(X, A). By (P6) for the input and Proposition 4.3.5(1), Map(K, L) is a homotopy limit
of Map(f:K, fxL) by [52, Theorem 4.2.4.1, Corollary A.3.2.28] and is thus a weakly contractible
Kan complex. Axiom (2) is trivial. By (P6) for the input, we have a cosimplicial diagram
p: N(A) — Fun(A!l, Caty,) sending [n] to the functor D(X,,, \) — Fun(A! x A, D(X,,,\)) that
corresponds to the following Cartesian diagram of functors:

)
)

do not depend on the choice of f.

<0 s
Ty —idx,

|

>1
0———1717",

where 750 and 72! (resp. idx,) are the truncation functors (resp. is the identity functor) of

D(Xp, A). Axiom (3) follows from the fact that l&n(p) provides a similar Cartesian diagram of
endofunctors of D(X, \).
For (2), by (1) it suffices to show that for every other atlas f': X — X, we have D?O(X7 A) =

iD?,O(X, A). Let K be an object of D?O(X, A) and form a Cartesian diagram

Y49>X6

4l
Xo—1> X
By (P6) for the input, the functors g* and ¢’* are t-exact, so that
G K 7Pl K e 72 g K o gL K = 0.
As g* is conservative by (P3) for the input, we have 72! f”*K = 0. In other words, f"*K belongs to
DSOY(X), N). Therefore, we have D?O(X, A) C D?O(X, A). By symmetry, we have D?O(X, A) D
DT (X, ). It follows that DF’(X,\) = DF (X, N). 0
Lemma 4.3.9 (P6). Let A be an arbitrary object of L. We have
(1) For every object X of €, we have Ax € DV(X,\).
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(2) If X belongs to £ and X is an object of C", then the auto-equivalence — @ s%\(1) of
D(X, A) is t-ezact.
(3) For every object X of C, the t-structure on D(X, ) is accessible, right complete, and
DS™®(X,\) =), DST"(X, \) consists of zero objects.
(4) For every morphism f:Y — X of C, the functor f*: D(X,\) — D(Y, ) is t-exact.
Proof. We choose an atlas f: Xo — X. Then (1) and (2) follows from (4), the definition

of the t-structure, and that f*Ax ~ Ax,. Moreover, (3) follows from the construction, the
conservativeness of f*, and the corresponding properties for Xy. Therefore, it remains to show

(4).

However, we may put f: Y — X into a diagram

f/

Y/ o X/
f
Yy ——= X
where u and v are both atlases. Then the assertion follows from the definition of the t-structure
and the fact that f’* is t-exact. O

Finally we construct the trace maps. We will construct the trace maps for &, and check (P7).
Construction of the trace maps for & and verification of (P7"*) are similar and in fact easier.
Same as before, we have two steps. We first construct the trace maps for RN Ey.

Lemma 4.3.10. There exists a unique way to define the trace map
Trf: T>0f!)\y<d> — Ax,

for morphisms f:Y — X in RN & NCY and integers d > dim™(f), satisfying (P7)(1) and
extending the input. In particular, for such a morphism f, we have fidy (d) € DSO(X, \).

Proof. Let
(4.6) Y, s x,
yol \Lmo
Y 4f> X

be a Cartesian diagram in €”, where z¢ and hence yg are atlases. Let N(AL)? x Al — €” be a
Cech nerve, as shown in the following diagram

(4.7) Y. o x,
yoi \Lwo
y s x

We call such a diagram a simplicial Cartesian atlas of f. We have dim™ (f,,) = dim™ (f) for every
n > 0. By Base Change which is encoded in é,EOH and the definition of —(d), we have

zy fidy (d) =~ foryg Ay (d) = fordy, (d) € DSO(Xp, \),

which implies that fily(d) belongs to DSY(X,\) by the definition of the t-structure. The
uniqueness of the trace map follows from condition (2) of Remark 4.1.6 applied to the diagram
(4.6) and (P3) applied to xg.
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For n > 0, we have trace maps Try, : 720 f,u\y, (d) = Ax,,. By condition (2) of Remark 4.1.6
applied to the squares induced by f,, we know that 75z, Tr . is a morphism of cosimplicial
objects of DY (X, \). Taking limit, we obtain a map

@ 70, Try, @ T<O$n*T20fn!Ayn (d) — @ T@xn*}\xn ~ \x.
neA neA neA

However, the left-hand side is isomorphic to

lim 7802, 770 fay Ay (d) ~ Jim 702, 77027 fidy (d)
neA neA

1

B
=]

i Tgo.’lin*l‘;;T>of1/\y (d) ~ T>Of!)\y<d>.

Therefore, we obtain a map Try, : 720 fidy (d) = Ax.

This extends the trace map of the input. In fact, for f in €Y, by condition (2) of Remark
4.1.6 applied to (4.7), Try, can be identified with im . n.a;, Try. Moreover, condition (2)
of Remark 4.1.6 holds in general if one interprets Try as Try, and Try as Try;, where f, is a
simplicial Cartesian atlas of f’, compatible with f,. In fact, by condition (2) of Remark 4.1.6
for the input, the bottom square of the diagram

u* Try,

U*T>Uf1)\y<d> u*)\X
\ Tr g/ \
:
= 720 f{ Ay (d) Ax/
Iim 7<%/ u* Try, -

; <0,/ >0 = rerom : <0,/ ~
lim 7% w720 fri )y, (d) lim 7% wkAx, ~
= \ L Trf/\

. {8 .

lim 70, 720 f/ Ay, lim 75027 Ax,

is commutative, where all the limits are taken over n € A. Since the vertical squares are
commutative, it follows that the top square is commutative as well. The case of condition (2)
of Remark 4.1.6 where u is an atlas then implies that Try, does not depend on the choice of f,.
We may therefore denote it by Try.

It remains to check conditions (1) and (3) of Remark 4.1.6. Similarly to the situation of
condition (2), these follow from the input by taking limits. O

Lemma 4.3.11. If f: Y — X belongs to RN & N CY, then the induced natural transformation

FHd) =idy o f(d) = f'o fro fr(d) L2 f

is an equivalence, where the first arrow is given by the unit transformation and uy is defined
similarly as (3.19).

Proof. Consider diagram (4.7). We need to show that for every object K of D(X, ), the natural
map f*K(d) — f'K is an equivalence. By Proposition 4.3.5(1), the map K — @nEA Unsul K

is an equivalence. Moreover, f' preserves small limits, and, by (P5P#®)(1), so does f*, since f
belongs to £’. Therefore, we may assume K = ,,,L, where L € D(X,,, A). Similarly to (4.3), the
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diagram

l |

is commutative up to homotopy. The upper horizontal arrow is an equivalence by (P5%#)(1), the
lower horizontal arrow is an equivalence by z EO}, and the right vertical arrow is an equivalence
by (P6) for the input. It follows that the left vertical arrow is an equivalence. g

Proposition 4.3.12 (P7(1)). There exists a unique way to define the trace map
TI‘fZ T>Of[)\y<d> — Ax,

for morphisms f: Y — X in &N é’l’ and integers d > dim™ (f), satisfying (P7)(1) and extending
the input. In particular, for such a morphism f, we have fidy (d) € DSO(X, ).

Proof. Let Yy: N(A4)? — € be a Cech nerve of an atlas yo: Yo — Y, and form a triangle

(4.8) Y
N

Y, —— = X.
For n > 0, we have f, € RN &, N C/. By Proposition 4.3.5(2), we have equivalences

lim fuyh Ay =~ lim Fymydy — fi lim YUy — fidy.
ncAcop neA°op neA°pP

Since y,, belongs to RN & N €Y, by Lemma 4.3.11 and Remark 4.1.7(5), we have equivalences
lim  fady, (d+dimy,) =~ L fuyp Ay (d+dimy,) = lim fuy, Ay (d).
neA°p neA°P neA°p
Combining the above ones, we obtain an equivalence

lim  fuidy, (d+ dimy,) = fidy(d).
neA°pP

By Lemma 4.3.10, fu Ay, (d + dimy,,) belongs to DSO(X, \) for every n > 0. It follows that the
colimit is as well by [53, Corollary 1.2.1.6]. Moreover, the composite map

720 fudy, (d + dimy,,) — hg 720 fudy, (d + dimy,,)
neA°P
=770 dim fudy, (d +dimy,) = 770 fidy (d)
neAcop

is induced by Try,. The uniqueness of Try then follows from condition (3) of Remark 4.1.6
applied to the triangle (4.8).

Condition (3) of Remark 4.1.6 applied to the triangles induced by f, implies the compatibility
of

Try, : T>0fn1)\yn (d+dimy,) = Ax

with the transition maps, so that we obtain a map Try, : 729 fidy (d) — Ax. This extends the
trace map of Lemma 4.3.10, by condition (3) of Remark 4.1.6 applied to (4.8) for f € RNE;NEY.
Moreover, condition (3) of Remark 4.1.6 holds for g € RNE;NCY, if we interpret Try as Try, and



ENHANCED SIX OPERATIONS AND BASE CHANGE THEOREM 119

Try, as Trp,, where he: Yo Xy Z — X. In fact, by condition (3) of Remark 4.1.6 for morphisms
in RN & NCY, the diagram

li&‘r>0fny Try(d+dim yy,)

limg 720 £ (720912 z (€) ) (d + dim yn)

|

lim 720 fi Ay (d)

=

720 Try(d)

lim 720 Az (d + e + dim yn) 720 fi(r2%91 Az (€))(d) 72 fidy (d)
\ Q\L lTrf.
>0 Trne
720 Az{d + e) Ax

commutes, where all the colimits are taken over n € A°P. It follows that Try, does not depend
on the choice of f,. We may therefore denote it by Try.

It remains to check the functoriality of the trace map. Similarly to the above special case of
condition (2) of Remark 4.1.6, this follows from the functoriality of the trace map for morphisms
in RN & NCY by taking colimits. a

Proposition 4.3.13 (P7(2)). If f: Y — X belongs to égﬂé’{, the induced natural transformation

[rd) =idy o f*(d) = fo fro fr(d) £ f
is an equivalence, where the first arrow is given by the unit transformation and uy is defined
similarly as (3.19).

Proof. We need to show that f*K(d) — f'K is an equivalence of every object K of D(X,\). Let
Yo: Yo — Y be an atlas. Since vg is conservative by Lemma 4.3.4, we only need to show that the
composite map

yoK(dim fo) = yg f*K(d + dimyo) — yg f'K(dimyo) = yof'K = fiK

is an equivalence, where fy: Yy — X is a composite of f and yg. However, this follows from
Lemma 4.3.11 applied to fp. O

5. RuNNING DESCENT

In this chapter, we run the program DESCENT recursively to construct the theory of six
operations of quasi-separated schemes in §5.1, algebraic spaces in §5.2, (classical) Artin stacks
in §5.3, and eventually higher Artin stacks in §5.4. Moreover, we start from algebraic spaces to
construct the theory for higher Deligne-Mumford (DM) stacks as well in §5.5. We would like to
point out that although higher DM stacks are special cases of higher Artin stacks, we have less
restrictions on the coefficient rings for the former.

Throughout this chapter, we fix a nonempty set [] of rational primes. See Remark 5.5.5 for
the relevance on [.

5.1. Quasi-separated schemes. Recall from Example 4.1.12 that Sch® is the full subcategory
of 8ch spanned by quasi-separated schemes, which contains 8ch9**? as a full subcategory. We
run the program DESCENT with the input data in Example 4.1.12. Then the output consists
of the following two maps: a functor

(5.1) senas EOT: (N(8ch®)?P x N(Rind)??)! — Catq,

that is a lax Cartesian structure, and a map

(5.2) scnasEO™: 85 1) (N(8ch®)?P x N(Rindyor) )™ P)E5) — Catoo,
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and Output II. Here we recall that F' denotes the set of morphisms locally of finite type of
quasi-separated schemes.

For each object X of 8ch®, we denote by thS(X ) the quasi-separated étale site of X. Its
underlying category is the full subcategory of SCh?} spanned by étale morphisms. We denote

by Xgs.¢t the associated topos, namely the category of sheaves on ths(X ). For every object
X of 8chP  the inclusions Etas°P(X) C Et(X) C Et(X) induce equivalences of topoi
qu.scp.ét — qu.ét — Xét~ _

The pseudofunctor Sch® x Rind — RingedPTopos sending (X, (£,A)) to (X ¢, A) induces
a map N(8ch®) x N(Rind) — N(RingedPTopos). Composing with T (3.1), we obtain a functor

(5.3) JLYEO: (N(8ch®™)?P x N(Rind)P)! — Cate,

that is a lax Cartesian structure. It is clear that the restriction of Sish'f{:EOI to (N(8ch9¢-*P)er x
N(Rind)°?P)! is equivalent to gjac.cc0 EOL.

Proposition 5.1.1 (Cohomological descent for étale topoi). Let f be an edge of (N(8ch®)°P x
N(Rind)°P)Y that is statically a smooth surjective morphism of quasi-separated schemes. Then
f is of universal Sﬁ;giEOI-descent.

Proof. This follows from the same proof of Proposition 3.5.5(1). O
Proposition 5.1.2. The two functors g« EO! (5.1) and SﬁﬁﬁEOI (5.3) are equivalent.

Proof. This follows from Proposition 4.1.1 and the previous proposition. O

Remark 5.1.3. Let X be object of Sch®, and A = (2, A) an object of Rind. Then it is easy to see
that the usual t-structure on SD(st.ét, A) coincides with the one on D(X, \) obtained in Output
IT of the program DESCENT.

5.2. Algebraic spaces. Let Esp be the category of algebraic spaces (§0.1). It contains Sch®® as
a full subcategory. We run the program DESCENT with the following input:
e C=N(&sp). It is geometric.
€ = N(8ch®), and s” — s’ is the unique morphism Spec Z[[1~!] — SpecZ. In particular,
¢’ =Cand €' =C.
&, is the set of surjective morphisms of algebraic spaces.
&’ is the set of étale morphisms of algebraic spaces.
& is the set of smooth morphisms of algebraic spaces.
é&' is the set of smooth morphisms of algebraic spaces of pure relative dimension d. In

particular, & = &/.

&, is the set of flat morphisms locally of finite presentation of algebraic spaces.

F = F is the set of morphisms locally of finite type of algebraic spaces.

L =N(Rind)°P, £’ = N(Rindy, )%, and L” = N(Rind_gor ) °P.

dim™ is the upper relative dimension (Definition 4.1.11).

e Input I and II are the output of §5.1. In particular, (EO! is (5.1), and o EO™" is (5.2).

Then the output consists of the following two maps: a functor

(5.4) SSPEOI: (N(Esp)°? x N(Rind)P) — Cat,
that is a lax Cartesian structure, and a map
(5.5) espBO™M 1 03 (1 ((N(Esp)” x N(Rindyor) )™ P)E5i — Catoo,

and Output II.
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For each object X of Esp, we denote by EtesP(X ) the spatial étale site of X. Its underlying
category is the full subcategory of Esp /X spanned by étale morphisms. We denote by Xcep ¢t the

associated topos, namely the category of sheaves on Et®P(X). For every object X of 8ch®, the
inclusion of the original étale site Et®(X) of X into Et*P(X) induces an equivalence of topoi
Xcsp.ét — qu.ét~

As in §5.1, we obtain a functor

(5.6) “REEO: (N(Esp)*? x N(Rind)) — Catog

that is a lax Cartesian structure. It is clear that the restriction es‘é'sé;EOI | (N(8ch®)°P x
N(Rind)°P)! is equivalent to g, EOL

Proposition 5.2.1 (Cohomological descent for étale topoi). Let f be an edge of (N(Esp)°P x
N(Rind)°P)Y that is statically a smooth surjective morphism of algebraic spaces. Then f is of

. p.ét
ungversal eblZsepEOI-descent.

Proof. This follows from the same proof of Proposition 3.5.5(1). ]
Proposition 5.2.2. The two functors ¢ ,EO' (5.4) and CSp(g':;EOI (5.6) are equivalent.

Proof. This follows from Proposition 4.1.1 and the previous proposition. O

Remark 5.2.3. Let X be object of Esp, and A = (2, A) an object of Rind. Then it is easy to see
that the usual t-structure on D(XZ, ;, A) coincides with the one on D(X, A) obtained in Output
IT of the program DESCENT.

Remark 5.2.4. In our construction of the map (3.13) in §3.4, the essential facts we used from
algebraic geometry are Nagata’s compactification and proper base change. Nagata’s compact-
ification has been extended to separated morphisms of finite type between quasi-compact and
quasi-separated algebraic spaces [12, Theorem 1.2.1]. Proper base change for algebraic spaces
follows from the case of schemes by cohomological descent and Chow’s lemma for algebraic
spaces [60, Premiere partie, Corollaire 5.7.13] or the existence theorem of a finite cover by a
scheme. The latter is a special case of [63, Theorem B] and also follows from the Noetherian
case [50, Théoréme 16.6] by Noetherian approximation of algebraic spaces [12, Theorem 1.2.2].

Therefore, if we denote by Espd®=®P the full subcategory of Esp spanned by (small) coproducts
of quasi-compact and separated algebraic spaces (hence contains Sch9“*P as a full subcategory),
and repeat the process in §3.4, then we obtain a map

£spre B EOM 1 65 01 (N(EspI®™P) P x N(Rindior) )™ P)F5i — Catoo,

whose restriction to 4 1y (N(Sch®*P)oP x N(Rindyo,)?)TP) G0 is equivalent to the map
EoH
Schac-sep .

Moreover, the restriction ¢, EO™ | 35 (23 (N(EspIe-=eP)oP x N(Rindgor ) %7)oP) S8, s equivalent
to the map g 'S EO™. In fact, by Remark 4.1.10(2), it suffices to prove that g e *SEO!
satisfies (P4). For this, we can repeat the proof of Proposition 3.5.5. The analogue of Remark
3.5.4 holds for algebraic spaces because the definition of trace maps is local for the étale topology
on the target.

5.3. Artin stacks. Let Chp be the (2,1)-category of Artin stacks (§0.1). It contains Esp as a
full subcategory. We run the simplified DESCENT (see Variant 4.1.9) with the following input:
e C = N(Chp). It is geometric.
e C = N(€&sp), and s” — ¢’ is the identity morphism of Spec Z[(O~!]. In particular, ¢’ =
@” = N(&spp) (resp. @ = €” = N(Chpp)), where Espy (resp. Chpp) is the category of
O-coprime algebraic spaces (resp. Artin stacks).
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&, is the set of surjective morphisms of Artin stacks.

& = &” is the set of smooth morphisms of Artin stacks.

€ is the set of smooth morphisms of Artin stacks of pure relative dimension d.

&, is the set of flat morphisms locally of finite presentation of Artin stacks.

F = F is the set of morphisms locally of finite type of Artin stacks.

L =N(Rind)°?, and L' = £L" = N(Rind_¢; ) °P.

dim™ is upper relative dimension, which is defined as a special case in Definition 5.4.4
later.

e Input I and II are given by the output of §5.2. In particular, ;EO! is (5.5), and (EO! =
EO™ is defined as the restriction of ¢, EO' (5.4) to

6;,{2} ((N(ESPD)OP X N(Rindm—tor)()p)u’()p)‘?:;tn.

&spg

Then the output consists of the following two maps: a functor
(5.7) enpEO": (N(Chp)?? x N(Rind)*?)™ — Cato
that is a lax Cartesian structure, and a map
ehpg EO™ 1 03 91 ((N(Chpp)® x N(Rindg.gor) )P ) &5 — Cato,
and Output II.

Now we study the values of objects under the above two maps. Let us recall the lisse-étale
site Lis-ét(X) of an Artin stack X. Its underlying category, the full subcategory (which is in
fact an ordinary category) of Chp /x spanned by smooth morphisms whose sources are algebraic
spaces, is equivalent to a U-small category. In particular, Lis-ét(X) endowed with the étale
topology is a U-site. We denote by Xjs¢ the associated topos. Let M C Ar(Chp) be the set
of smooth representable morphisms of Artin stacks. The lisse-étale topos has enough points
by [50, Remarque 12.2.2], and is functorial with respect to M, so that we obtain a functor
Chp,; x Rind — RingedPTopos. Composing with T (3.1), we obtain a functor

(5.8) (N(Chp)$2 x N(Rind)?)™ — Catoo

that is a lax Cartesian structure.
To simplify the notation, for an algebraic space U, we will write Ug, instead of Ugsp 4t in what
follows. Let A = (5, A) be an object of Rind. We denote by

Dcart (Xlis—éta )\) - D()(lis—éta /\)

(Notation 3.2.6) the full subcategory consisting of complexes whose cohomology sheaves are all
Cartesian (§0.1), or, equivalently, complexes K such that for every morphism f: Y’ — Y of
Lis-ét(X), the map f*(K|Yz) — (K|YZ) is an equivalence. This full subcategory is functorial
under T in the sense that (5.8) restricts to a new functor

(5.9) TSYEO!: (N(Chp) 7 x N(Rind)*?)™ — Cato
that is a lax Cartesian structure, whose value at (X, \) is Deart(Xiisst, A). It is clear that the
restrictions of 'G'EO! and ¢, ,EO! (5.4) to (N(Esp)%, x N(Rind)°)!! are equivalent, where

M’ = M N Ar(Esp). In order to compare “é'f;EOI and ehpEOI more generally, we start from the
following lemma, which is a variant of Proposition 4.1.1.

Lemma 5.3.1. Let (€, &,F) be a 2-marked co-category such that C admits pullbacks and & C
F are stable under composition and pullback. Let @ C C bea full subcategory stable under
pullback such that every edge in F s representable in C and for every object X of @, there
exists a morphism Y — X in & with Y in C. Let D be an oo-category such that DP admits
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geometric realizations. Put & = €N Cy and F = F N €. Let Fun®(C¥, D) C Fun(C¥,D)
(resp. Funé(é;p7®) - Fun(égtp,D)) be the full subcategory spanned by functors F such that for
every edge f: X§ — X, in & (resp. in &), F o (X31)P: N(A,y) — D is a limit diagram,
where X3 is a semisimplicial Cech nerve of f in € (resp. C) [52, Notation 6.5.3.6]. Then the
restriction map

Funé(égf’, D) — Fun® (e, D)
s a trivial fibration.

Proof. The proof is similar to Proposition 4.1.1, whose details we leave to the reader. O

For an object V' — X of Lis-ét(X), we denote by V the sheaf in Xjis-¢t represented by V.

The overcategory (Xiis.st) v is equivalent to the topos defined by the site Lis-ét(.X),, endowed

with the étale topology [3, Exposé iii, Proposition 5.4]. A morphism f: U — U’ of Lis-ét(X) )y
induces a 2-commutative diagram

(Xiis-et) 77 —s Uy,

(Xiis-et) 7 =—— (Xiisat) 50 — U,

of topoi [3, Exposé iv, §5.5].
For an object A = (£, A) of Rind, let .Dcart((Xlis—ét)/‘77>\)® - 'D((th_ét)/;, /\)® be the full

(monoidal) subcategory spanned by complexes on which the natural transformation f* o ey, o
u'* — €y, o u* is an isomorphism for all f. We have a functor

[1] x Lis-ét(X) x Rind — RingedPTopos
sending [1] x {f: U — V} x {\} to the square

((Xlis—ét)?“U’a A) & (UéEt’ A)

f*i lfét*

((Xlis—ét)?§7 A) % (VE A)

et

Composing with the functor T® (3.2), we obtain a functor
F: (A% x N(Lis-ét(X))? x N(Rind)” — CAlg(Catos )y st .c1-
By construction, F'(0,V,\) = @((Xlis_ét)/v, A)®. Replacing F(0,V,\) by the full subcategory
Dcart((XliS_ét)/"‘/', A)®, we obtain a new functor
F': (AY)°P x N(Lis-ét(X))°? x N(Rind)?? — CAlg(Cate,)
sending (AP x {f: U — V} x {A\} to the square

Deart(Xiis-st) 575 A)® <—— D(Uet, )®
f*T Fé,
‘:Dcart((Xlis—ét)/"‘/'y )\)® '& D(Vét, )\)®

We have the following two lemmas.
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Lemma 5.3.2. The functor F', viewed as an edge of
Fun(N(Lis-ét(X))°? x N(Rind)?, CAlg(Cat)),

is an equivalence. In particular, the functor F' factorizes through CAlg(Cat, )t

pr,st,cl®
Proof. We only need to prove that for every object V' of Lis-ét(X), the functor

6%{/ : D(V:ét; )\) — Dcart((Xlis—ét)/";a )\)

is an equivalence. This follows from the fact that

E*Vf MOd(‘/éh >\) — MOdcart((Xlis—ét) )‘)

/v
is an equivalence of categories and that the functor

eve: Mod((Xiis-st) o A) = (Vag, A)

/v
is exact, by the following lemma. d

Lemma 5.3.3. Let F': A — B be an exact fully faithful functor between Grothendieck Abelian
categories that admit an exact right adjoint G. Then F induces an equivalence of oo-categories
D(A) = D4(B), where D4(B) denotes the full subcategory of D(B) spanned by complexes with
cohomology in the essential image of €.

Proof. This is standard. The pair (F,G) induce a pair of t-exact adjoint between D(A) and
D4(B). To check that the unit and counit are natural equivalences, we may reduce to objects
in the Abelian categories, for which the assertion follows from the assumptions. O

Lemma 5.3.4. Letv: V — X be an object of Lis-ét(X), viewed as a morphism of Chp. Assume
that v is surjective. Then a compler K € D(Xjis.et, A) belongs to Deart (Xiis-et, A) if and only if
v*K belongs to Dcart((Xlis_ét)/v7 A).

Proof. The necessity is trivial. Assume that v*K belongs to 'Dcart((XhS_ét)/;, A). We need to
show that for every morphism f: Y’ — Y of Lis-ét(X), the map f*(K|Ye) — (K|YZ) is an
equivalence. The problem is local for the étale topology on Y. However, locally for the étale
topology on Y, the morphism Y — X factorizes through v [31, Corollaire 17.16.3 (ii)]. The
assertions thus follows from the assumption. O

Now let V4: N(A,)°? — N(Chp) be a Cech nerve of v where v: V' — X be an object of
Lis-ét(X), which can be viewed as a simplicial object of Lis-ét(X). By Lemma 5.3.4, we can apply
Lemma 3.3.3 to U, = ‘7:: and G, = Modcart((X]iS_ét)E{}« ,A). We obtain a natural equivalence of
symmetric monoidal co-categories )

(510) Dcart (Xlis—ét7 /\)® :_> 1% Dcart(()(lis—ét)/{/;a /\)®
ne

Proposition 5.3.5 (Cohomological descent for lisse-étale topoi). Let X be an Artin stack, V
an algebraic space, and v: V — X a surjective smooth morphism. Then there is an equivalence
in Fun(N(iRind)"p,CAlg(Gatoc)II;r,st,cl) sending X to the equivalence
‘Dcart(Xlis-éty )\)® :—> 1&1 ®(Vn,éta )‘)®7
neA

where Vy is a Cech nerve of v.
Proof. This follows from (5.10) and a quasi-inverse of the equivalence in Lemma 5.3.2. g

The previous proposition has the following four corollaries.
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Corollary 5.3.6. Let f: Y — X be a smooth surjective representable morphism of Artin stacks,
X an object of Rind, and Y, a Cech nerve of f. Then the functor

Dcart(Xlis—éta)\)® l> @1 Dcatrt(Yvn,lis—étv)\)®
neAg

is an equivalence.

Corollary 5.3.7. The functor “éf;EOI (5.9) belongs to Fung(égf’,eatoo) with the notation in
Lemma 5.3.1, where

o G = (N(Chp)° x N(Rind)°P)cr;

o F consists of edges of that statically belong to M ; and

o & C T consists of edges that are also statically surjective.

Corollary 5.3.8. The functor “éngOI (5.9) is equivalent to the restriction of the functor g, EO!
(5.7) to (N(Chp)F) x N(Rind)°P)I. In particular, for every Artin stack X and every object X of
Rind, we have an equivalence

Dcart (Xlis-ét7 )\)® ~ ®(X7 )‘)®

of symmetric monoidal co-categories. Consequently, Deart(Xiisst, \)® s a closed presentable sta-
ble symmetric monoidal co-category. Here we recall that D(X,\)® is the value of (X, \, (1), {1})
under the functor ehpEOI,

Corollary 5.3.9. Let X be an Artin stack, and X\ an object of Rind. Under the equivalence
in Corollary 5.3.8, the usual t-structure on Deart(Xiset, A) coincides with the t-structure on
D(X,\) obtained in Output II. In particular, the heart of D(X, \) is equivalent to (the nerve of)
Modeart (X5 4, A), the Abelian category of Cartesian (X5, 4, A)-modules.

Remark 5.3.10 (de Jong). The x-pullback encoded by ehpEOI can be described more directly
using big étale topoi of Artin stacks. For any Artin stack X, we consider the full subcategories
Espigp/x © Chppep ey x Of Chp/y spanned by morphisms locally of finite presentation whose
sources are algebraic spaces and by representable morphisms locally of finite presentation,'!
respectively. They are ordinary categories and we endow them with the étale topology. The
corresponding topoi are equivalent, and we denote them by Xy;g4t. The construction of Xy st
is functorial in X, so that we obtain a functor Chp x Rind — RingedPTopos. Composing with
T, we obtain a functor
(N(Chp)°? x N(Rind)?)! — Cat,

that is a lax Cartesian structure, sending (X, \) to D(Xpig.ét, A). Replacing the latter by the full
subcategory Deart(Xbig.ct; A) consisting of complexes K such that f*(K|YZ) — (K|Yz) is an
equivalence for every morphism f:Y — Y’ of Esp /x» we obtain a new functor

ensEO": (N(Chp)? x N(Rind)*?)"" — Catu

that is a lax Cartesian structure. Using similar arguments as in this section, with Lemma 5.3.1
replaced by Proposition 4.1.1, one shows that ek;:gEOI and @hpEOI are equivalent.

5.4. Higher Artin stacks. We begin by recalling the definition of higher Artin stacks. We
will use the fppf topology instead of the étale topology adopted in [65]. The two definitions are
equivalent [66]. Let Sch*® C Sch be the full subcategory spanned by affine schemes. Recall that
Sw is the oo-category of spaces in W € {U, V}.12

Hywe impose the “locally of finite presentation” condition here to avoid set-theoretic issues.
12\We refer to §0.7 for conventions on set-theoretical issues.
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Definition 5.4.1 (Prestack and stack). We defined the oo-category of (V-)prestacks to be
ChpP™® := Fun(N(Sch*™)? 8y). We endow N(Sch®T) with the fppf topology. We define the
oco-category of (small) stacks Chp™P! to be the essential image of the following inclusion

Shv (N(8ch*™)g,o¢) N Fun(N(Sch™)°P_ 8y() C ChpP*,

where Shv(N(8ch™®),.r) € Fun(N(8ch*®)?P, 8y) is the full subcategory spanned by fppf sheaves
[52, Definition 6.2.2.6]. A prestack F is k-truncated [52, Definition 5.5.6.1] for an integer k > —1,
if 7;(F(A)) = 0 for every object A of 8ch®® and every integer i > k.

The Yoneda embedding N(8ch®®) — ChpP™ extends to a fully faithful functor N(&sp) —
Chp"® sending X to the discrete Kan complex Homeg, (Spec A, X). The image of this functor is
contained in ChpPP'. We will generally not distinguish between N(€sp) and its essential image
in ChpPPf. A stack X belongs to (the essential image of) N(Esp) if and only if it satisfies the
following conditions.

e It is O-truncated.

e The diagonal morphism X — X x X is schematic, that is, for every morphism Z — X x X
with Z a scheme, the fiber product X X xxx Z is a scheme.

e There exists a scheme Y and an (automatically schematic) morphism f: Y — X that
is smooth (resp. étale) and surjective. In other words, for every morphism Z — X with
Z a scheme, the induced morphism Y x x Z — Z is smooth (resp. étale) and surjective.
The morphism f is called an atlas (resp. étale atlas) for X.

Definition 5.4.2 (Higher Artin stack; see [65] and [26]). We define k-Artin stacks inductively
for k > 0.
e A stack X is a 0-Artin stack if it belongs to (the essential image of) N(Esp).
For k£ > 0, assume that we have defined k-Artin stacks. We define:
e A morphism F’ — F of prestacks is k-Artin if for every morphism Z — F where Z is a
k-Artin stack, the fiber product F’ x g Z is a k-Artin stack.
e A k-Artin morphism F’ — F is flat (resp. locally of finite type, resp. locally of finite
presentation, resp. smooth, resp. surjective) if for every morphism Z — F' and every atlas
f:Y = F'xpZ where Y and Z are schemes, the composite morphismY — F/'xXpZ — Z
is a flat (resp. locally of finite type, resp. locally of finite presentation, resp. smooth, resp.
surjective) morphism of schemes.
e A stack X is a (k+ 1)-Artin stack if the diagonal morphism X — X x X is k-Artin, and
there exists a scheme Y together with an (automatically k-Artin) morphism f: Y — X
that is smooth and surjective. The morphism f is called an atlas for X.
We denote by Chp* 2" C Chp®P! the full subcategory spanned by k-Artin stacks. We define
higher Artin stacks to be objects of Chp™t = U@O Chp®AT. A morphism F’ — F of prestacks
is higher Artin if for every morphism Z — F where Z is a higher Artin stack, the fiber product
I’ x Z is a higher Artin stack.
To simplify the notation, we put Chp(™H4" .= N(8ch?) and Chp(~2-Ar = N(8ch9°*°P) and
we call their objects (—1)-Artin stacks and (—2)-Artin stacks, respectively.

By definition, Chp®** and Chp'™* are equivalent to N(&€sp) and N(Chp), respectively. For
k > 0, k-Artin stacks are k-truncated prestacks. Higher Artin stacks are hypercomplete sheaves
[52, Lemma 6.5.2.9]. Every flat surjective morphism locally of finite presentation of higher
Artin stacks is an effective epimorphism in the oo-topos Shv(N(Sch™®)g ) in the sense after
[52, Corollary 6.2.3.5]. A higher Artin morphism of prestacks is k-Artin for some &k > 0.

Definition 5.4.3. We have the following notion of quasi-compactness.
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e A higher Artin stack X is quasi-compact if there exists an atlas f: Y — X such that Y
is a quasi-compact scheme.

e A higher Artin morphism F’' — F of prestacks is quasi-compact if for every morphism
Z — F where Z is a quasi-compact scheme, the fiber product F’ x g Z is a quasi-compact
higher Artin stack.

We define quasi-separated higher Artin morphisms of prestacks by induction as follows.

e A 0-Artin morphism of prestacks F' — F' is quasi-separated if the diagonal morphism
F" — F' xp F', which is automatically schematic, is quasi-compact.

e For k > 0, a (k + 1)-Artin morphism of prestacks F' — F is quasi-separated if the
diagonal morphism F’ — F’ xp F’, which is automatically k-Artin, is quasi-separated
and quasi-compact.

We say that a morphism of higher Artin stacks is of finite presentation if it is quasi-compact,
quasi-separated, and locally of finite presentation.

We say that a higher Artin stack X is [-coprime if there exists a morphism X — Spec Z[J71].
This is equivalent to the existence of a [J-coprime atlas. We denote by thér C Chp?* the full
subcategory spanned by CJ-coprime higher Artin stacks. We put thk AT Chph AT N thér.

Definition 5.4.4 (Relative dimension). We define by induction the class of smooth morphisms
of pure relative dimension d of k-Artin stacks for d € ZU{—oo0} and the upper relative dimension
dim™ (f) for every morphism f locally of finite type of k-Artin stacks. If in Input 0 of §4.1, we let
F (resp. &, 8”) be the set of morphisms locally of finite type (resp. smooth morphisms, smooth
morphisms of pure relative dimension d) of k-Artin stacks, then such definitions should satisfy
Input 0(5-8).

When k = 0, we use the usual definitions for algebraic spaces, with the upper relative dimen-
sion given in Definition 4.1.11. For k > 0, assuming that these notions are defined for k-Artin
stacks. We first extend these definitions to k-representable morphisms locally of finite type of
(k + 1)-Artin stacks. Let f: Y — X be such a morphism, and Xy — X an atlas of X. Let
fo: Yo — Xo be the base change of f by u. Then fy is a morphism locally of finite type of
k-Artin stacks. We define dim™ (f) = dim™(fy). It is easy to see that this is independent of the
atlas we choose by Input 0(8d). We say that f is smooth of pure relative dimension d if fy is —
this is independent of the atlas we choose by Input 0(6). We need to check Input 0(5-8). Input
0(6-8) are easy, and (5) can be argued as follows. Since fy is a smooth morphism of k-Artin

stacks, there is a decomposition fy: Yy =~ HdeZ Yo,q M Xo. Let Xo — X be a Cech nerve

of u, and put Ye 4 = Yo 4 xx, Xe. Then [[,c; Yeq — YV is a Cech nerve of v: Yy — Y. Put
Y, = hﬂnerp Ypa- Then Y ~[],., Yy is the desired decomposition.
Next we extend these definitions to all morphisms locally of finite type of (k+1)-Artin stacks.

Let f: Y — X be such a morphism, and vq: Hdez 0.d (O—d> Y an atlas of Y such that
Up,q is smooth of pure relative dimension d. We deﬁne

dim™ (f) = sup{dim™ (f o vo 4) — d}.
deZ

We say that f is smooth of pure relative dimension d if for every e € Z, the morphism f o vg .
is smooth of pure relative dimension d + e. We leave it to the reader to check that these
definitions are independent of the atlas we choose, and satisfy Input 0(6-8). We sketch the
proof for Input 0(5). Since f o vg. is smooth and k-representable, it can be decomposed as

fe,er . . . .
Yo, ~ He'ez Yo,e,er u> X such that f. . is of pure relative dimension ¢’. We let Yy be

the colimit of the underlying groupoid object of the Cech nerve of e oy Yoeer = X. Then
Y ~ []4ez Ya — X is the desired decomposition.
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Let F be the set of morphisms locally of finite type of higher Artin stacks. For every k, we
are going to construct a functor

enpt-ar EOT: ((Ehp*A)P 5 N(Rind) )" — Catec
that is a lax Cartesian structure, and a map

ehp,EArEoH: 83 123 (((ChpEA)P x N(Rindgygor) ) ™) 25 — Catoo,

such that their restrictions to (k — 1)-Artin stacks coincide with those for the latter.

We construct by induction. When k& = —2, —1,0, 1, they have been constructed in §3.4, §5.1,
§5.2, and §5.3, respectively. Assume that they have been extended to k-Artin stacks. We run
the version of DESCENT in Variant 4.1.9 with the following input:
€ = ChpFTV-AT Tt is geometric.

@ = Chp*AT, s — ¢ is the identity morphism of Spec Z[~1]. In particular, €’ = €” =
ChpfsAt, and € = € = eup A,

& is the set of surjective morphisms of (k + 1)-Artin stacks.

& = &" is the set of smooth morphisms of (k + 1)-Artin stacks.

€" is the set of smooth morphisms of (k + 1)-Artin stacks of pure relative dimension d.
&, is the set of flat morphisms locally of finite presentation of (k 4+ 1)-Artin stacks.

F = F is the set of morphisms locally of finite type of (k + 1)-Artin stacks.

L = N(Rind)°?, and L' = £L"” = N(Rindg_4o, ).

dim™ is the upper relative dimension in Definition 5.4.4.

Input I and II is given by induction hypothesis. In particular, we take

I _ I I __ 11
B0 = o aBO', B0 = .\ EO™.

Then the output consists of desired two maps ehpk+l—ArEOI r1-a- EO™ and Output II, satis-

’ Chp

o
fying (P0) — (P7). Taking union of all & > 0, we obtain the following two maps: a functor
(5.11) ehpArEOI: ((Chp™*)°P x N(Rind)°P)! — Cat,

that is a lax Cartesian structure, and a map

(5.12) ehpgrEo”: 83 (23 ((ChpA")? x N(Rindr.or) )™ P) 500 = Catog.
5.5. Higher Deligne-Mumford stacks. The definition of higher Deligne-Mumford (DM)
stacks is similar to that of higher Artin stacks (Definition 5.4.2).

Definition 5.5.1 (Higher DM stack).
o A stack X is a 0-DM stack if it belongs to (the essential image of) N(Esp).
For k > 0, assume that we have defined k-DM stacks. We define:

e A morphism F’ — F of prestacks is k-DM if for every morphism Z — F where Z is a
k-DM stack, the fiber product F’ x Z is a k-DM stack.

e A k-DM morphism F’ — F of prestacks is étale (resp. locally quasi-finite) if for every
morphism Z — F and every étale atlas f: Y — F' xp Z where Y and Z are schemes, the
composite morphism Y — F' xp Z — Z is an étale (resp. locally quasi-finite) morphism
of schemes.

e A stack X is a (k4 1)-DM stack if the diagonal morphism X — X x X is k-DM, and
there exists a scheme Y together with an (automatically k-DM) morphism f: Y — X
that is étale and surjective. The morphism f is called an étale atlas for X.
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We denote by Chp*PM C @hpPP! the full subcategory spanned by k-DM stacks. We define
higher DM stacks to be objects of ChpPM = Uk>0 Chp M. We put thBM = Chp®M N thér,
and ChpfPM .= Chp"PM N ehpBM.

A morphism of higher DM stacks is étale if and only if it is smooth of pure relative dimension
0.

Let F' be the set of morphisms locally of finite type of higher DM stacks. For every k, we are
going to construct a functor

enpt-om EOT: ((Chp" PP 5 N(Rind) ") — Catog

that is a lax Cartesian structure, and a map

enpr-oM BO™: 65 1oy ((Chp*™ M) 5 N(Rindior) %)) 5| — Cateo,

such that their restrictions to (k — 1)-DM stacks coincide with those for the latter. Note that
the first functor has already been constructed in §5.4, after restriction. However for induction,
we construct it again, which in fact coincides with the previous one.

We construct by induction. When k& = 0, they have been constructed in §5.2. Assuming that
they have been extended to k-DM stacks. We run the program DESCENT with the following
input:

€= @hp(k+1)'DM. It is geometric.

€ = Chp"PM s — ¢’ is the morphism Spec Z[(1~!] — Spec Z.

& is the set of surjective morphisms of (k 4+ 1)-DM stacks.

&' is the set of étale morphisms of (k + 1)-DM stacks.

& is the set of smooth morphisms of (k + 1)-DM stacks.

& is the set of smooth morphisms of (k + 1)-DM stacks of pure relative dimension d.
&, is the set of flat morphisms locally of finite presentation of (k 4+ 1)-DM stacks.
F = F is the set of morphisms locally of finite type of (k + 1)-DM stacks.

L = N(Rind)°P, L' = N(Rind¢e, ), and L” = N(Rind_gor )P

dim™ is the upper relative dimension.

Input I and II is given by induction hypothesis. In particular, we take

¢EO' = ¢ ronEO!,  oBOM = o BOM.

Then the output consists of desired two maps ethLDMEOI, ehpk+LDNIEOII and Output II,

satisfying (P0) — (P7P). Taking union of all £ > 0, we obtain a functor

(5.13) enpr EO': ((ChpPM)oP x N(Rind)?P) — Cat

that is a lax Cartesian structure, and a map

(5.14) enpost BO™ 2 83 15 (((EhpPM)* x N(Rindyo,) ) 7)1, — Cati.

Remark 5.5.2. We have the following compatibility properties:
ehpAz-EOI to ((€hp”M)oP x N(Rind)°P)! is equivalent to

e The restrictions of ehpDMEOH and ehpArEOII to the common domain
d

e The restriction of vEO®.

ChpP

Jall

03,12y ((Chp™)°P > N(Rindmgor) )1 ) 5251

are equivalent.
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Variant 5.5.3. We denote by Q@ C F the set of locally quasi-finite morphisms. Applying
DESCENT to the map Schqc.igleOH constructed in Variant 3.4.6 (and g,ac-s» EO'), we obtain a
map

(5.15) ehpg‘;onH: 03 123 (((ChP™M)P x N(Rind)*P) P Er, — Catos.

This map and ehpPM EO! are equivalent when restricted to their common domain.

Remark 5.5.4. The oo-category Chp™™ can be identified with a full subcategory of the co-
category Sch(Get(Z)) of Get(Z)-schemes in the sense of [54, Definition 2.3.9, Remark 2.6.11]. The
constructions of this section can be extended to Sch(9¢;(Z)) by hyperdescent. We will provide
more details in Remark 9.4.2.

Remark 5.5.5. Note that in this chapter, we have fixed a non-empty set O of rational primes. In

fact, our constructions are compatible for different [J in the obvious sense. For example, if we

are given [J; C [y, then the maps Chpit EO" and Chply EOM are equivalent when restricted to
1 2

their common domain, which is

03,12y ((Chp(Y}) P x N(Rindp, or) )™ 7)1

Lall*

We also have obvious compatibility properties for Output IT under different [J.

6. SUMMARY AND COMPLEMENTS FOR TORSION COEFFICIENTS

In this chapter we summarize the construction in the previous chapter and presents several
complements. In §6.1, we study the relation of our construction with category of correspondences.
In §6.2, we write down the resulting six operations for the most general situations and summarize
their properties. In §6.3, we prove some additional adjointness properties in the finite-dimensional
Noetherian case. In §6.4, we develop a theory of constructible complexes, based on finiteness
results of Deligne [16, Th. finitude] and Gabber [41, Exposé XIIIp|. In §6.5, we show that our
results for constructible complexes are compatible with those of Laszlo—Olsson [47].

We remark that §6.1 is independent to the later sections, so readers may skip the first section
is they are not interested in the relation with category of correspondences.

Once again, we fix a nonempty set [J of rational primes.

6.1. Symmetric monoidal category of correspondences. The oo-category of correspon-
dences was introduced by Gaitsgory [25]. We start by recalling the construction of the simplicial
set of correspondences from Example 1.4.29.

For n > 0, we define C(A™) to be the full subcategory of A™ x (A™)° spanned by (i, ) with
i < j. An edge of C(A™) is vertical (resp. horizontal) if its projection to the second (resp. first)
factor is degenerate. A square of C(A™) is ezact if it is both a pushout square and a pullback
square. We extend the above construction to a colimit preserving functor C: Setp — Seta. Then
C also preserves finite products. The right adjoint functor is denoted by Corr. In particular, we
have Corr(K), = Hom(C(A"), K) for a simplicial set K.

Definition 6.1.1. Let (C,&1,&5) be a 2-marked oo-category. We define a simplicial subset
Ceorr: &;.&, of Corr(C), called the simplicial set of correspondences, such that its n-cells are given
by maps C(A™) — € that send vertical (resp. horizontal) edges into &; (resp. €3), and exact
squares to pullback squares.

By construction, there is an obvious map

* cart
27{2}681,52 - GCOTT: &€1,€2

which is a categorical equivalence by Example 1.4.29.
The following lemma shows that under certain mild conditions, Ceorr: €,,¢, i an co-category.
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Lemma 6.1.2. Let (C,E&1,E&3) be a 2-marked co-category such that
(1) both €1 and &2 are stable under composition;
(2) pullbacks of €1 by o exist and remain in E;;
(3) pullbacks of €5 by &1 exist and remain in E,.

Then Ceorr: €,,8, 8 an co-category.

Proof. We check that Ceorr: ¢,,6, — * has the right lifting property with respect to the collection
As in [52, Proposition 2.3.2.1]. Since C preserves colimits and finite products, to give a map

fr(Amx A} [ (9A™ x A?) = Corr(€)
OA™ X A2

is equivalent to give a map

f4(C(A™) x C(AD)) 11 (C(OA™) x C(A?)) — €.
C(OA™)xC(A2)

Let X and X’ be defined as in the dual version of [52, Proposition 4.3.2.15] with € = C(A?),
€Y = C(A?), and D = C (in our setup). If f factorizes through Ceom: £, e,, then f# induces a
commutative square

C(OA™) — =X

|-

cA™) ——=x’

by assumption (2) or (3). Since the restriction map X — X’ is a trivial fibration by the dual of
[52, Proposition 4.3.2.15], there exists a dotted arrow g*: C(A™) — K as indicated above. We
regard g* as a map C(A™ x A2%) ~ C(A™) x C(A?) — €, thus induces a map g: A™ x A? —
Corr(€). Since all exact squares of C(A™ x A?) can be obtained by composition from exact
squares either contained in the source of f* or being constant under the projection to C(A™),
the three assumptions ensure that if f factorizes through Ceown: ¢, ,¢,, then so does g. O

Now we study a certain natural symmetric monoidal structure on the oo-category Ceorr: €, ¢, -
Let (G, &) be a marked co-category. We construct a 2-marked oo-categories ((€°P)1or €= €7)
as follows: We write an edge f of (€P)I:oP in the form {Y;}1<j<n — {Xit1<i<m lying over an
edge a: (m) — (n) of N(Fin,). Then & consists of f such that the induced edge Y, ;) — X;
belongs to € for every i € a~(n)°. Define £~ to be the subset of &t such that the edge « is
degenerate.

Proposition 6.1.3. Let (C,&1,&2) be a 2-marked oo-category satisfying the assumptions in
Lemma 6.1.2 and such that Ce, admits finite products. Then

11 .
(6.1) p: ((€P)P) oy o ex — N(Fin,)
is a symmetric monoidal co-category, whose underlying oo-category is Coorr: €,,85-

Proof. Put 0% = ((€°P)thor) er.ef for simplicity. If (€, &1, E2) satisfies the assumptions in

Lemma 6.1.2, then so does ((CP)1oP € €7). Therefore, by Lemma 6.1.2, O% is an co-category
hence (6.1) is an inner fibration by [52, Proposition 2.3.1.5]. By Lemma 6.1.4 below, we know
that p is a coCartesian fibration since C¢, admits finite products. Moreover, we have the obvious
isomorphism O%l) ~ [Licicn O% induced by pj: O%w — O‘g). By [53, Definition 2.0.0.7], (6.1)
is a symmetric monoidal co-category. (|
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Lemma 6.1.4. Suppose that (C, &1, E2) satisfies the assumptions in Lemma 6.1.2. If we write
an edge f of ((€oP)H:oP) ef in the form

corr: €1

{Zihi<i<n —= {Xihi<ism

|

Yitigi<n

lying over an edge a: (m) — (n) of N(Fin,) under (6.1), then f is p-coCartesian [52, Definition
2.4.2.1] if and only if
(1) for every 1 < j < n, the induced morphism Z; —'Y; is an isomorphism; and
(2) for every 1 < j < n, the induced morphisms Z; — X; with a(i) = j exhibit Z; as the
product of {Xi}ai)=; in Ce,.

Proof. The only if part: Suppose that f is a p-coCartesian edge.
We first show (1). Without lost of generality, we may assume that « is the degenerate edge
at (1). In particular, the edge f we consider has the form

z

Yy
Assume that f is p-coCartesian. In terms of the dual version of [52, Remark 2.4.1.4], we are
going to construct a diagram of the form

—> .

(6.2) AL01}

|

g
Ag ((eop)uﬁp)corr: 8;,8;

-
_
P lp
~

N(Fin,)

-

An

in which n = 3 and the bottom map is constant with value (1). We may construct a map g in
(6.2) such that its image of C(A{®12h) C(A{0L3h) C(A1023}) are

Z2—>Z—>0x, z Z—>0x, z Z—>2x,
z Y Yy

respectively, in which

all squares are Cartesian diagrams;

all edges z — x are same as the one in the presentation of f;

all vertical edges z — y are same as the one in the presentation of f;
in the second and third diagrams, all 2-cells are degenerate.
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Note that the existence of the first diagram is due to the lifting property for n = 2. Now we lift g
to a dotted arrow as in (6.2). The image of the unique nondegenerate exact square in C(At1:2:3})
provides a pullback square

y—=y

.

Therefore, the edge y — v’ is an isomorphism, and it is easy to check that the left vertical edge
y — z is an inverse of the edge z — y in the presentation of f.

Next we show (2). Without lost of generality, we may assume that « is the unique active map
from (m) to (1) [53, Definition 2.1.2.1]; and the edge f has the form

Yy —{zi}1<i<m-

Y
We construct a diagram (6.2) as follows. The bottom map A" — N(Fin,) is given by the
sequence of morphisms
(my & (1) &,
Note that we have a projection map 7: C(A™) — (A™) to the second factor. Denote by C(A™)g
the preimage of (A{l71)P under 7, and C(A™)go the preimage of (QAL»"HoP under 7. Tt
is clear that C(A{) N C(A™)g C C(A™)go. Suppose that we are given a map

a: (OA—nhyor 5 (Cg )

Hziti<i<m

such that « | A%} is represented by y — {i}1<igm as in the edge f. We regard « as a map
o (DAL hor & (m)° — C¢,. Note that 7 induces a projection map
7' (C(AR) N C(A™)) * (m)° — (QAH11)oP  (m)°.
We then have a map g, == o o’: (C(AJ) NC(A™)g) * (m)° — Cg,, which induces a map g as in
(6.2). The existence of the dotted arrow in (6.2) will provide a filling of o to (A{b--m})oP This
implies that y — {Zi}1<i<m is a final object of (Ce,)/(z,},1c,c0n-
The if part: Let f be an edge satisfying (1) and (2). To show that f is p-coCartesian, we

again consider the diagram (6.2). Define C(A™)’ to be the oo-category by adding one more object
(0,0)" emitting from (0,0) in C(A™), which can be depicted as in the following diagram

(0,2) (0,1) (0,0) —— (0,0)".

L

(1,2) ——(1,1)

|

(2,2)

We have maps C(A") % C(A")" 2 C(A™), in which ¢ is the obvious inclusion, and ~ collapse
the edge (0,1) — (0,0) to the single object (0,1) and sends (0,0)" to (0,0). Let K C C(A"™)
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be the simplicial subset that is the union of C(A§) and the top row of C(A™). Define K’ to
be the inverse image of K under v. Then ¢ sends C(Ay) into K’. We have one more inclusion
/' C(A™) — C(A™)’ that sends (0,0) to (0,0)" and keeps the other objects.

A map g as in (6.2) gives rise to a map g*: C(AR) — (€°P)Ler. By (2) and [53, Remark
2.4.3.4], we may extend g* to K. Consider the new map g* oy oc: C(A}) — (€°P)1oP  which
gives rise to a map ¢’ as in (6.2) however with the restriction ¢’ | A%} being an equivalence
in the co-category ((€oP)ter) er.ef by (1). Therefore, we may lift ¢’ to an edge ¢’ as the
dotted arrow in (6.2) by [52, Proposition 2.4.1.5]. Now ¢’ induces a map §'*: C(A") — (CoP)Iop,
To find a lifting of g as the dotted arrow in (6.2), it suffices to extend §’* to C(A™)" under
the inclusion ¢ such that its restriction to C(Ay) with respect to the other inclusion ¢ coincides

with g#. However, this lifting problem only involves the top row of C(A™)/, which can be solved
because of (2). O

Definition 6.1.5 (symmetric monoidal co-category of correspondences). Given a 2-marked oo-
category (G, &1, &2) satisfying the assumptions in Proposition 6.1.3(3), we call (6.1) the symmetric

monoidal co-category of correspondences associated to (C, €1, Ey), denoted by p: Gi%rr: ey,
®

N(Fin.) or simply €. ¢, ¢,- It is a reasonable abuse of notation since its underlying co-category
is ecorr: E1,E2
We apply the above construction to the source of the map thADTEOII (5.12). Take € =

Chpa’ x N(Rind.tor), &1 := €r to be the set of edges of the form (f, g) where f belongs to F

and g is an isomorphism, and €s = all to be the set of all edges. Note that (€, &1, £5) satisfies the

assumptions in Proposition 6.1.3(2) hence defines a symmetric monoidal co-category C’?;rr: € poall-
By definition, we have the identity 7

05 (27 ((Ehp) P x N(Rindr 1)) P)Eih = 8 15 ((€7) 1) 5, o

Since the map

Sy ez,

1°%2

11, =9
— ((eop) Op)corr: 81_78; - ecorr: Epyall

is a categorical equivalence, by Proposition 6.1.3(1), the map (5.12) induces a map
(6.3) e .. epan — Catoo.
Lemma 6.1.6. The functor (6.3) is a lax Cartesian structure.

Proof. Tt follows from the fact that (5.11) is a lax Cartesian structure, the construction of (5.12),
and Lemma 6.1.4. O

From the above lemma, we know that (6.3) induces an oo-operad map

(6.4) enparEOcor (ChpA* x N(Rind_or ))& | — Catl

corr * corr: Ep,al
between symmetric monoidal co-categories. Similarly, we have two more co-operad maps

(6.5) enpP4 EOcorr + (Chp™™ 5 N(Rindior)) & | — Catl,

corr: Ep,al

and

(6.6) SO o+ (Chp™™ x N(Rind)) . ¢ oy — Cat’,

@hpDM corr *

induced from (5.14) and (5.15), respectively.
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Remark 6.1.7. By all the constructions and (P2) of DESCENT, we obtain the following square

((ChpAF x N(Rindr_r )% ) HC—— ((€hp™* x N(Rind))or)H

ArEO op,(6.4) \L
Ar . ® ChpD %
(Chpr" x N(Rindo_tor)) ey : fpall > Cat,
in the co-category of symmetric monoidal oo-categories with oco-operad maps, where the right
vertical map is induced from ehpArEOI (5.11).
ehpADrEO
the new one has the advantage that its source is an co-category as well.
The above remarks can be applied to the other two cases as well.

The new functor loses no information from the original one ehpArEOH. However,
O

corr

6.2. The six operations. Now we can summarize our construction of Grothendieck’s six op-
erations. Let f: Y — X be a morphism of Chp”* (resp. Chp™M, resp. ChpPM), and X an object
of Rind. From ehpArEOI (5.11) (resp. ChpDMEOI (5.13), resp. ehpDMEOI) and ehpgrEOcorr (6.4)

(resp. enpPMEO corr (6.5), resp. ehpé‘ﬁoncorr (6.6)), we directly obtain three operations:

1L: f*: D(X, ) — D(Y, \), which underlies a monoidal functor
DX, N® = DY, N

2L: fi: D(Y, ) — D(X, A) if f is locally of finite type, A belongs to Rindp_t,, and X is [O-coprime
(resp. f is locally of finite type and A belongs to Rindye,, resp. f is locally quasi-finite
and A is arbitrary);

3L: —®@—=—-—&x —: D(X, ) x D(X,A) = D(X, N).

If X is a 1-Artin stack (resp. 1-DM stack), then D(X, A\)® is equivalent to Deart (Xiis-st, A)® (resp.
D (X4, A)®) as symmetric monoidal oo-categories.

Taking right adjoints for (1L) and (2L), respectively, we obtain:
1R: f.: D(Y,A) = DX, \);
2R: f': D(X,\) — D(Y,\) under the same condition as (2L).
For (3L), moving the first factor of the source D(X, \) x D(X, A) to the target side, we can write
the functor — ® — in the form D(X, \) — Fun®(D(X, \), D(X, )\)), since the tensor product on
D(X, A) is closed. Taking opposites and applying [52, Proposition 5.2.6.2], we obtain a functor
D(X, A)°P — Fun®(D(X, A), D(X, \)), which can be written as
3R: Hom(—,—) = Homx(—,—): D(X, )P x D(X, ) = D(X, \).

Besides these six operations, for every morphism 7: X' — A of Rind, we have the following
functor of extension of scalars:

4L: 7*: D(X, A) — D(X, N'), which underlies a monoidal functor
@ DX, N)® — D(X,\)%.

The right adjoint of the functor «* is the functor of restriction of scalars:
4R: 7. DX, N) — D(X,N).

Theorem 6.2.1 (Kiinneth Formula). Let f;: Y; — X; (i =1,...,n) be finitely many morphisms
of thér (resp. ChpPM | resp. thDM) that are locally of finite type (resp. locally of finite type,
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resp. locally quasi-finite). Given a pullbacks square

YTy Y,
|y b
x (pl,...,Pn) xl X oo X :X:n

of Chpf' (resp. ChpPM, resp. ChpPM ), then for every object A of Rindr o, (resp. Rindeor, resp.
Rind), the following square

a1 —®y - ®yq;,—

Q(ljh)\) X X D(%YNA) D(y7>\)
f1!><-“><fnzi if!
D(X1,A) X -+ x D(X, \) — A EXTEPT oy )

is commutative up to equivalence.
Proof. 1t is a consequence of existence of the map Chp%rEOcorr (6.4) (resp. enpPM EO corr (6.5),
lof
resp. ehpDi‘,IEOcomr (6.6)). O
The previous theorem has the following two corollaries.

Corollary 6.2.2 (Base Change). Let
W Z
qi ip
f

y—Lox

g9
E——

be a Cartesian diagram in thér (resp. Chp®M, resp. ChpDM) where p is locally of finite type
(resp. locally of finite type, resp. locally quasi-finite). Then for every object A of Rindg o, (Tesp.
Rindyer, resp. Rind), the following square

D(W, \) <L— D(2, \)

L

D(Y,A) <—D(X, A)
is commutative up to equivalence.

Corollary 6.2.3 (Projection Formula). Let f: Y — X be a morphism of C?hp‘é,r (resp. ChpPM,
resp. thDM) that is locally of finite type (resp. locally of finite type, resp. locally quasi-finite).
Then the following square

DY, A) x DX, A) — L=y, \)

f!Xidl lfz

DX, A) x DX, \) ——2= = D(X, \)

is commutative up to equivalence.

Proposition 6.2.4. Let f: Y — X be a morphism of thAr, and A an object of Rind. Then
(1) The functors f*(— ®@x —) and (f*—) @y (f*—) are equivalent.
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(2) The functors Homx (—, fo—) and f.Homy(f*—,—) are equivalent.
is a morphism o, P TESP. P, resp. P that is locally of finite type
8) If f i hism. of ChpaF ChpPM Chp®M) that is locally of fini
resp. locally of finite type, resp. locally quasi-finite), an elongs to Rindg_¢or (TESP-
locally of fini locall -fini d X bel Rind
Rindyer, resp. Rind), then the functors f'Homy(—, —) and Homy(f*—, f'~) are equiv-
alent.
(4) Under the same assumptions as in (3), the functors f.Homy(—, f'~) and Homx (fi—, —)
are equivalent.

Proof. For (1), it follows from the fact that f* is a symmetric monoidal functor.

For (2), the functor Hom(—, fi—): D(X, )" x D(Y,A) — D(X,\) induces a func-
tor D(X,A)°P  —  Fun®(D(Y,\), D(X,N)). Taking opposite, we obtain a functor
D(X,A) — Fun®(D(X, \), D(Y, \)), which induces a functor D(X,A) x D(X,\) — D(Y, ). By
construction, the latter is equivalent to the functor f*(— ®x —). Repeating the same process
for f.Hom(f*—,—), we obtain (f*—) ®y (f*—). Therefore, by (1), the functors Hom(—, f.—)
and f,Hom(f*—, —) are equivalent.

For (3), the functor f'Hom(—,—): D(X,\)? x D(X,\) — D(Y,)\) induces a func-
tor D(X, AP  —  Fun®(D(X,\), D(Y,\)). Taking opposite, we obtain a functor
D(X,\) — Fun™(D(Y, \), D(X, \)), which induces a functor D(X,\) x D(Y,\) — D(X,)). By
construction, the latter is equivalent to the functor — ®x (fi—). Repeating the same process
for Hom(f*—, f'~), we obtain fi((f*—) ®y —). Therefore, by Corollary 6.2.3, the functors
f'Hom(—, —) and Hom(f*—, f'—) are equivalent.

For (4), the functor f.Hom(—,f'=): D(Y,\)? x D(X,\) — D(X,\) induces a
functor D(Y,\)°? — Fun®(D(X,\),D(X,))).  Taking opposite, we obtain a functor
D(Y,\) — Fun(D(X, ), D(X,\)), which induces a functor D(Y, ) x D(X,\) — D(X,\).
By construction, the latter is equivalent to the functor fi(— ®y (f*—)). Repeating the same
process for Hom(fi—,—), we obtain (fi—) ®x —. Therefore, by Corollary 6.2.3, the functors
foHom(—, f'—) and Hom(fi—, —) are equivalent. O

Proposition 6.2.5. Let X be an object of Chp™*, and 7: N — X a morphism of Rind. Then
(1) The functors m*(— ®@x —) and (7*—) @ (7*—) are equivalent.
(2) The functors Homy(—, m.—) and m.Homy (7*—, —) are equivalent.

Proof. The proof is similar to Proposition 6.2.4. O

Proposition 6.2.6. Let f: Y — X be a morphism of Chp™, and 7: N — X a perfect morphism
of Rind. Then the square

(6.7) DY, V) <I— DX, N)

]

D(Y,\) =<— D(X, \)

is right adjointable and its transpose is left adjointable.

Ar

In particular, if X is an object of Chp™" and m: A — X is a perfect morphism of Rind, then

7* admits a left adjoint
m: DX, N) = D(X,N).

Proof. The first assertion follows from the second one. To show the second assertion, by Lemma
4.3.7, we may assume that f is a morphism of 8ch®*°?. In this case the proposition reduces to
Lemma 3.2.8. ]
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Proposition 6.2.7. Let f:Y — X be a morphism of Chpt (resp. Chp™™, resp. Chp®M) that
is locally of finite type (resp. locally of finite type, resp. locally quasi-finite), and w: X' — X a
perfect morphism of Rind_tor (resp. Rindyio,, resp. Rind). Then the square

(6.8) DY, V) —L = DX, N)

DY, ) — = D(X, \)

1s Tight adjointable and its transpose is left adjointable.
Proof. This follows from Lemma 4.3.7 and Lemma 3.4.9. O

Proposition 6.2.8. Let X be an object of Chp™*, X = (Z2,A) an object of Rind, and & an object
of 2. Consider the obvious morphism m: X' = (Z,¢,A |Z/¢) — A. Then

(1) The natural transformation m(— @y 7*—) — (m—) ®x — is a natural equivalence.

(2) The natural transformation 7*Homy(—,—) — Homy (7*—,7*—) is a natural equiva-
lence.
(8) The natural transformation Homy(m—, —) — mHomy (—, 7 —) is a natural equivalence.

Proof. Similarly to the proof of Proposition 6.2.4(3,4), one shows that the three assertions are
equivalent (for every given X). For assertion (1), we may assume that X is an object of Sch®°P.
In this case, assertion (2) follows from the fact that 7* preserves fibrant objects in Ch(Mod(—))™.

Let X be an object of Chp™*, and A = (Z,A) and object of Rind. There is a t-structure on
D(X, A), such that if X is a 1-Artin stack (resp. 1-DM stack), then it induces the usual t-structure
on its homotopy category Deart (X5, 4, A) (resp. D(XZ, A)). For an object sx: X — SpecZ of
(‘fhpAr, we put Ay = s5%Aspecz, which is a monoidal unit of D(X,\)® and also an object of
DY(X, N).

Theorem 6.2.9 (Poincaré duality). Let f: Y — X be a morphism of Chp2' (resp. ChpP™) that
is flat (resp. flat and locally quasi-finite) and locally of finite presentation. Let X be an object of
Rindg_tor (resp. Rind). Then

(1) There is a trace map
Tr: 72° fidy(d) = 720 A f* M) (d) — Ax

for every integer d > dim™ (f), which is functorial in the sense of Remark 4.1.6.
(2) If f is moreover smooth, the induced natural transformation

us: fio f*(dim f) — idyx
is a countt transformation, so that the induced map
fH(dim f) — f': DX, N) = D(Y, \)
is a natural equivalence of functors.

Proof. This is simply (P7) of DESCENT. O
Corollary 6.2.10 (Smooth (resp. Etale) Base Change). Let

w22

| ]

y——X
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be a Cartesian diagram in thér (resp. thDM) where p is smooth (resp. étale). Then for every
object A of Rindg_to, (resp. Rind), the following square

D(W, \) <2— D(Z,))

Q*T Tp*
i

9(137 >‘) <~ (xv )‘)
is right adjointable.

Proof. This is part (1) of (P5"). Tt also follows from Corollary 6.2.2 and Theorem 6.2.9(2) as
in Lemma 4.1.13. ]

Proposition 6.2.11. Let f: Y — X be a morphism of thér (resp. Chp™™), and X\ an object
of Rindp_ger (resp. Rindio,). Assume that for every morphism X — X from an algebraic space
X, the base change Y xx X — X is a proper morphism of algebraic spaces; in particular, f is
locally of finite type. Then

fer 1 D(Y,A) = D(X, A)

are equivalent functors.

Proof. We only prove the proposition for thér and leave the other case to readers. For simplicity,
we call such morphism f in the proposition as proper. For every integer k > 0, denote by C* the
subcategory of Fun(A!, ChpfAT) spanned by objects of the form f: Y — X that is proper and

edges of the form

(6.9) y Ly

| )

y——X

that is a Cartesian diagram in which p hence ¢ are smooth. In addition, we let C~! be the
subcategory of €0 spanned by f: Y — X such that X hence Y are quasi-compact separated
algebraic spaces. For k > —1, denote by £ the subset of (€*); consists of (6.9) in which p hence
q are moreover surjective. We have € N (€F—1); = k1 for k > 0.

By Corollary 6.2.10 and the map ehpgArEOEk (obtained from EO! as in (3.14)), for

ChplyA*
every k > —1, we have two functors

FF FF: (€")P — Fun(A', Caty,)

in which the first (resp. second) one sends f: Y — X to f.: D(Y,A) — D(X,\) (resp.
fi: DY, A) = D(X, A)), and an edge (6.9) to

fi (resp. f{)
_—

DY, A) D(X', N)
q*T Tp*
DY, n) L),

By Remark 5.2.4, F-! and F!_1 are equivalence. Applying Proposition 4.1.1 successively to
marked co-categories (C*, EF), we conclude that F* and FI’c are equivalence for every k > 0. The
proposition follows. 0
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Remark 6.2.12. Let f: Y — X be a morphism of thér (resp. thDM) that is locally of finite
type and representable by DM stacks, and A an object of Rind_to, (resp. Rindie,). We can
always construct a natural transformation

of functors, which specializes to the equivalence in Proposition 6.2.11 if f satisfies the property
there.

Theorem 6.2.13 ((Co)homological descent). Let f: X — X, be a smooth surjective mor-
phism of Chp™* (resp. Chp®™M), and X a Cech nerve of f.
(1) For every object \ of Rind, the functor
DX, A) = lim D(X,7, A)
neA
is an equivalence, where the transition maps in the limit are provided by *-pullback.
(2) Suppose that f is a morphism of C?hp‘é,r (resp. C‘hpDM). For every object A of Rindp_or
(resp. Rindioy ), the functor
D(XT,N) L m D(X;,\)
neA

is an equivalence, where the transition maps in the limit are provided by !-pullback.

Proof. This follows from (P4) of DESCENT. O

Corollary 6.2.14. Let f: Y — X be a morphism of Chp”* (resp. @hpDM) and lety: Yy" =Y
be a smooth surjective morphism of ChpA* (resp. thDM) Denote Yt the Cech nerve of y with
the morphism y,: Y,F — Y =Y. Put f,, = foyn: Y,[ — X.

(1) For every object A of Rind and every object K € DZ°(Y, A), we have a convergent spectral

sequence
EPY = H(f,,y2K) = HPFO LK,

(2) Suppose that f is a morphism of thér (resp. thDM). For every object \ of Rindr_yo,
(resp. Rindyo,) and every object K € DSO(Y, A), we have a convergent spectral sequence

EP? = HI(f_py' K) = HPTfK

Proof. This essentially follows from Theorem 6.2.13 and [53, Proposition 1.2.4.5, Variant 1.2.4.9].
For (1), we obtain a cosimplicial object N(A) — DZ°(Y, A) whose value at [n] is yn.y:K,
such that K is its limit by Theorem 6.2.13(1); in other words, we have K = Mmooy K

Applying the functor f,, we obtain another cosimplicial object N(A) — D=%(X, A) whose value
at [n] is fn.y:K, such that f.K is its limit. Put € := D(X,A)° and let C5o = DZ°(X, A)°P,
Cco = DSY(X,A)° be the induced (homological) t-structure. Then we obtain a simplicial
object N(A)°? — C>o whose value at [n] is fr.y K, with f.K its geometric realization. By
[53, Proposition 1.2.4.5, Variant 1.2.4.9], we obtain a spectral sequence {EP'9},>; abutting to
HP0 £, K, with EP? = H(f,.y2K).

For (2), by Theorem 6.2.13(2), the functor D(Y, \)°? — fm D(Y,F, A\)°P is an equivalence,
where the transition maps in the limit are provided by !-pullback. Similar to (1), we obtain
a cosimplicial object N(A) — DSO(Y,A)°P whose value at [n] is ¥y, K, such that K is its
limit. Applying the functor f;, we obtain another cosimplicial object N(A) — DSO(Y, A)°P
whose value at [n] is fuy,K, such that fiK is its limit. Put € := D(X,A) and let C5q =
DSY(X,A), C<o = DZYX,A) be the induced (homological) t-structure. Then we obtain a
simplicial object N(A)? — €5 whose value at [n] is fuy,K, with fiK its geometric realization.
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By [53, Proposition 1.2.4.5, Variant 1.2.4.9], we obtain a spectral sequence {EP9},, abutting
to HPT4 fiK, with EP? = H(f_py" K). O

The following lemma will be used in §6.4.

Lemma 6.2.15. Let f: Y — X be a morphism locally of finite type of ChpfF (resp. Chp™™ ), and
A an object of Rind_oy (resp. Rindioy ). Then fi restricts to a functor DSO(Y, \) — DS2A(X, )),
where d = dim™ (f). Moreover, if f is smooth (resp. étale), then fi o f' restricts to a functor
DSOX, A) — DSO(X, ).

Proof. We may assume that X is the spectrum of a separably closed field.

We prove the first assertion by induction on k when Y is a k-Artin stack. Take an object
K € DSY(Y,\). For k = —2, Y is the coproduct of a family (Y;);cr of morphisms of schemes
separated and of finite type over X, so that

K =P fa(K|Yi) € DX, ),
iel

where f; is the composite morphism Y; — Y Jy X. Assume the assertion proved for some
k> —2,and let Y be a (k+ 1)-Artin stack. Let Y, be a Cech nerve of an atlas (resp. étale atlas)

Yo: Yo — Y and form a triangle
Y
7N
Y. e X.

Then, by Theorem 6.2.13(2), we have fiK ~ mneAOP fuyh K. Thus, it suffices to show that for

every smooth (resp. étale) morphism g: Z — X where Z is a k-Artin stack, (f o g)1g'K belongs
to DS24(X, \). For this, we may assume that g is of pure dimension e (resp. 0). The assertion
then follows from Theorem 6.2.9 and induction hypothesis.

For the second assertion, we may assume that f is of pure dimension d (resp. 0). It then
follows from Theorem 6.2.9(2) and the first assertion. O

Remark 6.2.16. Let f: Y — X be a smooth morphism of (1-)Artin stacks, and 7: A’ — A a ring
homomorphism. Standard functors for the lisse-étale topoi induce

Lff{s_ét . Dcart (xlis—éta A) — Dcart (ylis—éta A)7

- é@x — Deart (Xis-6t, A) X Deart (Xiis-éts A) = Deart (Xiis-st, A),
La*: Deart (Liis-¢t, A) = Deart (Liis-st, A').
By Corollary 5.3.8, we have an equivalence of categories
(6.10) hD(X, A) ~ Deart (Xniset, A),

and isomorphisms of functors

hf* ~Lfi e, h(—®x—)~(—®&x—), hr"~Lz"
compatible with (6.10).
Let f: Y — X be a morphism of Artin stacks. Using the methods of [57, (9.16.2)], one can
define a functor
Lt f*: D& (Xiseet, A) = Dy (Yhiseee, A).
Similarly to Proposition 6.5.2 in §6.5, there is an isomorphism between hf** ~ L* f . com-
patible with (6.10), where f** denotes the obvious restriction of f*.
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Assume that there exists a nonempty set [ of rational primes such that A is (J-torsion and X
is O-coprime. Then the functors R fijs.¢t« and RHomy for the lisse-étale topoi induce

R fiiscets : D5y (Ynisers A) — D (Xiisae, A),

cart

Rj'fom:x : Dcart (:X:Iis-ét; A)Op X Dcart(xlis-éta A) — Dcart(xlis-ét7 A)

Indeed, the statement for R fiis¢ts, similar to [57, Proposition 9.9], follows from smooth base
change; and the statement for RHomy, similar to [47, Corollary 4.2.2], follows from the fact that
the map g*RHomx (—,—) — RHomy (¢*—, g*—) is an equivalence for every smooth morphism
g:Y — X of O-coprime schemes, which in turn follows from the Poincaré duality. By adjunction,
we obtain isomorphisms of functors hHomy ~ RHomy and hf ~ R™ fiis.¢t+, compatible with
(6.10).

6.3. More adjointness in the finite-dimensional Noetherian case. Recall the following
result of Gabber: for every morphism f: Y — X of finite type between finite-dimensional Noe-
therian schemes, and every prime number £ invertible on X, the ¢-cohomological dimension of
f« is finite [41, Exposé XVIII-A, Corollary 1.4]. This extends easily to morphisms representable
by algebraic spaces as follows.

Lemma 6.3.1. Let f: Y — X be a morphism of finite presentation between U-coprime finite-
dimensional Noetherian higher Artin stacks. Let X be a O-torsion ringed diagram. Then
DX, N) = DY, \) and, if f is 0-Artin, f.: D(Y,\) = D(X, \) have bounded cohomological
amplitude.

Proof. For the first assertion, we reduce by Poincaré duality first to the case of a morphism
between affine schemes, and then to the case of a closed immersion. In this case, the assertion
follows from Gabber’s theorem for the complementary open immersion. For the second assertion,
we reduce to the case where X is a scheme. Then Y is an algebraic space. By Noetherian
induction, it suffices to show that for every open immersion j: V — Y with V a scheme, the
£-cohomological dimensions of j, and (f7). is finite. Thus we may assume f is representable by
schemes. This case follows readily from the case of schemes. O

We say that a higher Artin stack X is locally Noetherian (resp. locally finite-dimensional) if
X admitting an atlas Y — X where Y is a coproduct of Noetherian (resp. finite-dimensional)
schemes.

Proposition 6.3.2. Let f: Y — X be a morphism locally of finite type of thér, andm: N — A
an arbitrary morphism of Rindg_o,. Assume that X is locally Noetherian and locally finite-
dimensional. Then f': D(X,\) — D(Y,\) admits a right adjoint; the squares (6.7) and
(6.8) are right adjointable. Moreover, if f is 0-Artin, quasi-compact and quasi-separated, then
f«: DY, ) = D(X, \) also admits a right adjoint.

Proof. Let g: [[Z; = Z — Y be an atlas of Y. By the Poincaré duality, g' is conservative, and
h: exhibits D(Z, \) as the product of D(Z;, \), where h;: Z; — Z. Therefore, to show that f'
preserves small colimits, it suffices to show that, for every 4, (f o g;)' preserves small colimits,
where g;: Z; — Y. We may thus assume that X and Y are both affine schemes. Let i be a
closed embedding of Y into an affine space over X. It then suffices to show that 7' preserves
small colimits, which follows from the finiteness of cohomological dimension of j,, where j is the
complementary open immersion.

To show that (6.7) and (6.8) are right adjointable, we reduce by Lemma 4.3.7 to the case of
affine schemes. By the factorization above and the Poincaré duality, the assertion for f' reduces
to the assertion for f.. We may further assume that 2 = = = {*} where A = (£,A) and
N = (2/,A’). In this case, it suffices to take a resolution of A’ by free A-modules.
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For the last assertion, by smooth base change, we may assume that X is an affine Noetherian
scheme. In this case, by Lemma 6.3.1, f.: D(Y,\) = D(X, A) commutes with small colimits and
hence admits a right adjoint. |

6.4. Constructible complexes. We study constructible complexes on higher Artin stacks and
their behavior under the six operations. Let A = (2, A) be a Noetherian ringed diagram. For
every object £ of Z, we denote by e¢ the morphism ({{},A(§)) = (E,A).

We start from the case of schemes. Let X be a scheme. Recall from [3, Exposé ix, Définition
2.3] that for a Noetherian ring R, a sheaf F of R-modules on X is said to be constructible if the
stalks of F are finitely-generated R-modules and every affine open subset of X is the disjoint
union of finitely many constructible subschemes U; such that the restriction of F to each U; is
locally constant.

Definition 6.4.1. We say that an object K of D(X, ) is a constructible complex or simply
constructible if for every object § of = and every ¢ € Z, the sheaf H7efK € Mod(X,A(§)) is
constructible. We say that an object K of D(X, ) is locally bounded from below (resp. locally
bounded from above) if for every object £ of = and every quasi-compact open subscheme U of X,
e;K| U is bounded from below (resp. bounded from above).

Note that we do not require constructible complexes to be bounded in either direction. Note
that K € D(X, A) is locally bounded from below (resp. from above) if and only if there exists a
Zariski open covering (U;);er of X such that K| U; is bounded from below (resp. from above).

Lemma 6.4.2. Let f: Y — X be a morphism of schemes. Let K be an object of D(X, ).
If K is constructible (resp. locally bounded from below, resp. locally bounded from above), then
K satisfies the same property. The converse holds when f is surjective and locally of finite
presentation.

Proof. The constructible case follows from [3, Exposé ix, Propositions 2.4(iii), 2.8]. For the
locally bounded case we use the characterization by open coverings. The first assertion is then
clear. For the second assertion, by [3, Exposé ix, Lemme 2.8.1] we may assume f flat, hence
open. In this case the image of an open covering of Y is an open covering of X. |

The lemma implies that Definition 6.4.1 is compatible with the following.

Definition 6.4.3 (Constructible complex). Let X be a higher Artin stack. We say that an
object K of D(X, \) is a constructible complex or simply constructible (resp. locally bounded from
below, resp. locally bounded from above) if there exists an atlas f: Y — X with Y a scheme, f*K
is constructible (resp. locally bounded from below, resp. locally bounded from above).

We denote by Deons(X, A) (resp. DE)(X,N), DE)(X,\) or DP)(X, N\)) the full subcategory
of D(X, \) spanned by objects that are constructible (resp. locally bounded from below, locally
bounded from above, or locally bounded from both sides). Moreover, we put

DX, A) = Deons(X, X) 1D (X, ),

cons

D) (X, A) = Deons(X,A) N D(_)(X7 A),

cons

DE)L (X, A) = Deons(X, 2) N D) (X, N).

cons

Proposition 6.4.4. Let f: Y — X be a morphism of higher Artin stacks.

(1) Let K be an object of D(X, ). If K is constructible (resp. locally bounded from below,
resp. locally bounded from above), then f*K satisfies the same property. The converse
holds when f is surjective and locally of finite presentation. In particular, f* restricts to
a functor
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1L f*: Deons(X, A) = Deons(Y A).

(2) Suppose that X and Y are O-coprime higher Artin stacks (resp. higher DM stacks),
and f is of finite presentation (Definition 5.4.3). Let \ be a O-torsion (resp. torsion)
Noetherwn rmged diagram. Then fi restricts to

2 fie Cons(K A) = CDE;QS(X, A), and if f is 0-Artin (resp. 0-DM), fi: Deons(Y, A) —
Deons(X, N).

(3) The functor — ®x — restricts to a functor
3L — ®x —: Did(X, A) x DEGd(X,A) = DEo(X, A).

In particular, Dﬁgn’s(X, A)® is a symmetric monoidal subcategory.

Proof. For (1), we reduce by taking atlases to the case of schemes, which is Lemma 6.4.2. The
reduction for the second assertion is clear. The reduction for the first assertion uses the second
assertion.

For (2), we may assume E = {*}. We prove by induction on k that the assertion holds when
f is a morphism of k-Artin (resp. k-DM) stacks. The case k = —2 is [3, Exposé xvii, Théoréme
5.3.6]. Now assume that the assertions hold for some k > —2 and let f be a morphism of (k+1)-
Artin (resp. (k+1)-DM) stacks. By smooth base change (Corollary 6.2.10), we may assume that
X is an affine scheme. Then Y is a (k+ 1)-Artin (resp. (k + 1)-DM) stack, of finite presentation
over X. It suffices to show that for every object K of DS (Y, ), fiK belongs to DS2L(Y, N),

where d = dim™(f). Let Y, be a Cech nerve of an atlas yo: Yy — Y, where Yj is an affine

scheme, and form a triangle

Y—>X

Then for n > 0, f, is a quasi-compact and quasi-separated morphism of k-Artin (resp. k-DM)
stacks. By Theorem 6.2.13 and the dual version of [53, Variant 1.2.4.9], we have a convergent
spectral sequence

EP? = HI(f_py' K) = HPTfiK

By induction hypothesis and the Poincaré duality (Theorem 6.2.9(2)), E{"? is constructible for
all p and g. Moreover, E"? vanishes for p > 0 or ¢ > 2d by Lemma 6.2.15. Therefore, fiK belongs
to DX, A).

For (3), we may assume X is an affine scheme. The assertion is then trivial. 0

To state the results for the other operations, we work in a relative setting. Let S be a [J-
coprime higher Artin stack. Assume that there exists an atlas S — S, where S is a coproduct
of Noetherian quasi-excellent schemes'® and regular schemes of dimension < 1. We denote by
Chpitk /s C th% the full subcategory spanned by morphisms X — S locally of finite type.

Proposition 6.4.5. Let f: Y — X be a morphism of th{?tr/s, and A a O-torsion Noetherian
m'nged diagram. Then the operations introduced in §6.2 restrict to the following
: far COns(Y A) = DEQS(X ) if f is quasi-compact and quasi-separated;
2R : f1 DE(X,N) = DEL(Y, M)
3R’: Homy(—,—): Dgons(X A)°P X DCOHS(X A) — ‘Dggns(X A) if Ej¢ is finite for all § € E.

13Recall from [41, Exposé I, Définition 2.10] that a ring is quasi-excellent if it is Noetherian and satisfies
conditions (2), (3) of [31, Définition 7.8.2]. A Noetherian scheme is quasi-excellent if it admits a Zariski open
cover by spectra of quasi-excellent rings.
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Proof. Suppose that A = (2,A). We first reduce to the case = = {x}. The reduction follows
from Proposition 6.2.6 and Proposition 6.2.7 for (1R’) and (2R’), respectively. For (3R’), by
Proposition 6.2.8(2) and the assumption on =/, we may assume Z= finite. In this case, by

Proposition 6.2.5(2), it suffices to prove that every K € DEQS(X, A) is a successive extension

of egile, where Lg € Déjr)ls(Xg,A(g)) for every object £ € This being trivial for 2 = (),
we proceed by induction on the cardinality of 2. Let Z/ C = be the partially ordered subset
spanned by the minimal elements of Z, and let Z” be the complement of Z’. Then we have a
fibre sequence i,L — K — [[ccz ecxefK, where it (E",A|E") - A and L € DEQS(E”,A | Z27).
Since =’ is nonempty, it then suffices to apply the induction hypothesis to L.

We then prove by induction on k that the assertions for = = {*} hold when f is a morphism
of k-Artin stacks. The case k = —2 is due to Deligne [16, Th. Finitude, Corollaires 1.5, 1.6] if S
is regular of dimension < 1 and to Gabber [41, Exposé XIII] if S is quasi-excellent. In fact, in
the latter case, by arguments similar to [16, Th. Finitude, §2.2], we may assume \ = (x,Z/nZ).
In the finite-dimensional case we also need the finiteness of cohomological dimension recalled at
the beginning of §6.3. Now assume that the assertions hold for some k > —2 and let f be a
morphism of (k+1)-Artin stacks. Then (2R’) follows from induction hypothesis, Theorem 6.2.9(2)
and (11”); (3R’) follows from induction hypothesis, Proposition 6.2.4(3), Theorem 6.2.9(2) and
(1), (2R’). The proof of (1R’) is similar to the proof of Proposition 6.4.4. Indeed, to show that
for every object K of D20 (Y, )), f.K belongs to DZ%_(X, \), it suffices to apply the convergent
spectral sequence

(1 [1

EP? = HY(fpey, K) = HPTf K
and induction hypothesis. O

Proposition 6.4.6. Let f: Y — X be a morphism of (‘fhpf?tr/s, and A a O-torsion Noetherian
ringed diagram. Assume that S is locally finite-dimensional. Then the operations introduced in
§6.2 restrict to the following

1R fi: Deons(Y, A) = Deons(X, N) if f is quasi-compact, quasi-separated, and 0-Artin;

2R’: fl : Dcons(‘va )‘) — Dcons(Yva )\);

3R’ Homy (—, —): DEA(X, A% X Deons (X, X) = Deons (X, N) if Ej¢ is finite for all & € Z.

Here ’Dgf,zs(X ,A) € Deons(X, A) denotes the full subcategory spanned by objects K such that
for every § € E, e¢K is locally of finite tor-dimension.

Proof. This follows from Proposition 6.4.5 and Lemmas 6.3.1 and 6.4.7. |

Lemma 6.4.7. Let X be a O-coprime finite-dimensional Noetherian higher Artin stack. Let
A = (E,A) be a O-torsion Noetherian ringed diagram with Z finite and let K € Deons(X, N)
such that for every £ € E, efK is locally of finite tor-dimension. Then Homyx (K, —) has finite
cohomological amplitude.

Proof. As in the proof of Proposition 6.4.5, any L € DS%(X, A) is a successive extension of eg,L¢
with Le € DSH(X, A(€)), where [ denotes the greatest length of chains in Z. We are thus reduced
to the case Z = {x}. We then reduce to the case where X is a scheme and K = 5 K’, where
j: U = X is an immersion and K’ € Dons(U, A) is a perfect complex. In this case

Homx (K, L) ~ j.Homx (K, 7*L) ~ j.(5*L ® Homx (K', A))

and we conclude by the fact that j, has finite cohomological amplitude. (|
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6.5. Compatibility with Laszlo—Olsson (torsion coefficients). In this section we establish
the compatibility between our theory and the work of Laszlo and Olsson [47], under the (more
restrictive) assumptions of the latter.

We fix O = {¢} and a Gorenstein local ring A of dimension 0 and residual characteristic .
We will suppress A from the notation when no confusion arises. Let S be a O-coprime scheme,
endowed with a global dimension function, satisfying the following conditions.

(1) S is affine excellent and finite-dimensional;
(2) For every S-scheme X of finite type, there exists an étale cover X’ — X such that, for
every scheme Y étale and of finite type over X', cd,(Y) < oo;

Remark 6.5.1. In [47], the authors did not explicitly include the existence of a global dimension
function in their assumptions. However, their method relies on pinned dualizing complexes (see
below), which makes use of the dimension function. Note that assumption (2) above is slightly
weaker than the assumption on cohomological dimension in [47]; for example, (2) allows the
case S = SpecR and ¢ = 2 while the assumption in [47] does not. Nevertheless, assumption (2)
implies that the right derived functor of the countable product functor on Mod(Xgt, A) has finite
cohomological dimension, which is in fact sufficient for the construction in [47].

Let th{}i\;ﬂs be the full subcategory of Chpiy /s spanned by (1-)Artin stacks locally of finite
type over S, with quasi-compact and separated diagonal. Stacks with such diagonal are called
algebraic stacks in [50] and [47]. We adopt the notation Deons(Xiis-6t) € Deart (Xiis-et) from §0.1.
For a morphism f: Y — X of finite type (of @hp{“f%g ), Laszlo—Olsson defined functors

Rf.: DS (Yiser) — DL (Xis-se),
Rf! D((:o_ns (yhs et) — Dgons(xlls et)
Lf*: Deons(Xiis-6t) =+ Deons(Ynis-¢t),
Rf': cons(:x) — Deons (Yis-¢t ),

ons

RfHomx : xhs ct)op X Dcons(xhs ct) — Dcons(xhs ct)

COHS

3 D) =) =)
- ®x — cons(xhb et) X Dcons(xlls et) - Dcons(xlis-ét)'

L
Three of the six functors, R f., RHomy, and — ®x —, are standard functors for the lisse-étale
topoi and can be extended to Deart (see Remarks 6.2.16 and 5.3.10):

Rf.: D Cdrt (léhs &) = Dcart (Xhis-et )
RHomx : Deart (xlis—ét) X Deart (xlis—ét) — Deart (xlis—ét ) ,

L
— ®x —: Dcart (xlis—ét) X Deart (xlis—ét) — Dcart(xlis—ét)~
Moreover, the construction of Lf* in [47, §4.3] can also be extended to Deart:
Lf* : Deart (xlis—ét) — Decart (ylis—ét)-

In fact, it suffices to apply [47, Theorem 2.2.3] to Deayt. The six operations satisfy all the usual
adjointness properties (cf. [47, Propositions 4.3.1, 4.4.2]). On the other hand, restricting our
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constructions in the two previous sections, we have

fo: DY) = DH(X),

Ji: DGas(9) = D)),

D) = DY),

't Deons(X) = Deons(Y),

FHomy : D(X)P x D(X) — D(X),
—®x —: D(X) x D(X) = D(X).

The equivalence of categories hD(X) =~ Deart(Xiset) (6.10) restricts to an equivalence
hDcons(X) 2 Deons(Xiisst ). The main result of this section is the following.

Proposition 6.5.2. We have equivalences of functors
hf. ~Rf., hfi~Rf, hf*~Lf" hf ~Rf,

L
hHomy ~ RHomy, h(—®x —) ~ (- x —),
compatible with (6.10).

Proof. The assertions for — ®x — and Homy are special cases of Remark 6.2.16. Moreover, by
adjunction, the assertion for f. (resp. fi) will follow from the one for f* (resp. f').
Let us first prove that hf* ~ Lf*: Deart (Xiis-6t) = Deart(Ynis-et). We choose a commutative
diagram
Y —=X

L

9——=X

where the vertical morphisms are atlases. It induces a 2-commutative diagram
f.
Yo — X,

nyi f inx

Yy——X.

Using arguments similar to §5.4, we get the following diagram

foct
Dcart(MOd(K,ét)) Dcart (MOd(Xo,ét))
\ . - \
% . #n n,ét ] .
Ny, cart @neA D(}/n,ét) — @neA D()(n,ét)
/ n;{,ca/
#*
Dcart (ylis—ét) <-—-"—-"-""—-"—"—-"=—"=—"—-"—- - - Dcalrt (xlis—ét ) .

By [47, Theorem 2.2.3], X .., and 7y, are equivalences. By the construction of L f*, Lf* fits
into a homotopy version of the rectangle in the above diagram. Therefore, we have an equivalence
hf* ~Lf*.

Let Qs € D(S) be a potential dualizing complex (with respect to the fixed dimension function)
in the sense of [41, Exposé XVII, Définition 2.1.2], which is unique up to isomorphism by [41,
Exposé XVII, Théoréme 5.1.1] (see Remark 6.5.3). For every object X of (?hp{“fé\fSB , with structure
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morphism a: X — S, we put Qx = a'Qg. Let u: U — X be an object of Lis-ét(X). Then
u*Qyx ~ Qu(—d) by the Poincaré duality (Theorem 6.2.9(2)), where d = dimwu. Consider the
morphism of topoi (€., €*): (Xiseét) o Us. Applying Lemma 5.3.2, we get an equivalence
Qx| (xlis_ét)/5 ~ e*Qu(—d), where we regard Qx as an object of Deart(Xiiset) and Qp as an
object of D(Ug). The equivalence is compatible with restriction by morphisms of Lis-ét(X),
so that Qx is a dualizing complex of X in the sense of [47, Definition 3.4.5], which is unique
up to isomorphism by [47, Proposition 3.4.3, Lemma 3.4.4]. Put Dy := Homx(—,Qx) and
Dy := RHomy (—, Qx) =~ hDy. By [47, Corollary 3.5.7], the biduality functor id — Dy o Dy is
a natural isomorphism of endofunctors of Dcons(Xiis.¢t). Therefore, the natural transformation
hf' — hf' o Dy o Dy is a natural equivalence when restricted to Deons(Xiis-¢t). By Proposition
6.2.4(3), we have

foDy oDy =~ f'Homy (Dy—, Q) =~ Homy (f*Dx—, f'Qx)
~ J'fomy (f*Dx—, Qg) = @xj o f* (@) 'Dx

Since hf* ~ L f*, this shows
hf' ~DyoLf* oDy =Rf,
where the last identity is the definition of R f' in [47, Definition 4.4.1]. O

Remark 6.5.3. As Joél Riou observed (private communication), although the definition, existence
and uniqueness of potential dualizing complexes are only stated for the coefficient ring R = Z/nZ
in [41, Exposé XVII, Définition 2.1.2, Théoréme 5.1.1], they can be extended to any Noetherian
ring R’ over R. In fact, if 0 is a dimension function of an excellent Z[1/n]-scheme X and K is a

L
potential dualizing complex for (X, §) relative to R, then K = Kr®pg R’ is a potential dualizing

complex for (X, §) relative to R’ by the projection formula RI', (Kg) é)R R ~RI,(Kg é@R R,
where x is a geometric point of X. The formula follows from the fact that the punctured strict
localization of X at z has finite cohomological dimension [41, Exposé XVIII-A, Corollary 1.4].
Moreover, by the theorem of local biduality [41, Exposé XVII, Théorémes 6.1.1, 7.1.2], Kg/ is a
dualizing complex for D2 (Xe, R') in the sense of [41, Exposé XVII, Définition 7.1.1] as long
as R’ is Gorenstein of dimension 0.

7. ADIC FORMALISM

In this chapter, we provide the adic formalism for Grothendieck’s six operations. In §7.1,
we provide our adic formalism by constructing two enhanced operation maps via the limit con-
struction. In §7.2, we study several properties of the enhanced operation maps we constructed
previously. In §7.3, we study the relation between the limit construction and so-called adic com-
plexes. In §7.4 and §7.5, we study constructible adic complexes and construct adic dualizing
complexes. In §7.6, we study a special kind of ringed diagrams for which the adic formalism is
the most satisfactory. This includes the most common application, namely, the ¢-adic one. The
last section §7.7 is dedicated to proving the compatibility between our theory and Laszlo—Olsson
([48] and [49]) under their restrictions.

7.1. The limit construction. Recall from §5.4 that for higher Artin stacks, we construct the
first enhanced operation map

enprrEO": ((Chp™)?P x N(Rind)*?)™ — Catoo,
and the second enhanced operation map

ehperEoH: 83 (23 (((ChpA")P x N(Rindr.or) )™ P) 3001 — Catos.
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Their restrictions to the common domain ((€hp&')? x N(Rindr io)?)™ are equivalent. In
particular, for every object X of Chp”" and every object A = (,A) of Rind, we obtain a
diagram Z°? — Prl given by ¢ — D(X,A(¢)) with the transition map given by extension of
scalars.

Definition 7.1.1. We define the adic derived co-category of A-modules on X to be
D(X, A, = N%l D(X,A()).

The goal of this section is to make the above definition functorial in a homotopy coherent way.
Namely, we will construct the first enhanced adic operation map

(7.1) enpA EOT: ((Chp™)?P x N(Rind)*)™ — Catoo,

and the second enhanced adic operation map
(7.2) ehp%?EOH: 6;7{2}(((Chpér)0p X N(Rindg_tor)oi’)u"’p)?gﬁl — Catoo,

such that their values on (X, \) are both (equivalent to) D(X, \),.

By definition, there is a tautological functor Rind — Cat; sending (Z,A) to Z. Applying
Grothendieck’s construction, we obtain an op-fibration m: Rind™" — Rind. More precisely,
Rind"™™" is an ordinary category whose objects are pairs ((,A), &) where (=, A) is an object of
Rind and ¢ is an object of =, and a morphism from ((E,A),&) to ((E',A’),£’) is a morphism
(I',7): (E,A) — (B, ) of Rind such that I'(§) admits an arrow to £’. We have another functor
o: Rind"™" — Rind sending ((Z,A), &) to (x,A(£)). We have two natural inclusion

jo: N(Rind)? — N(Rind) ox(gind)er N(Rind"™")°,
j1: N(Rind"™™V)° — N(Rind) o (mindyer N(Rind™")%?
of simplicial sets.

To construct (7.1), we start from the map

enp A EO": ((Chp™)?P x N(Rind"™)P)!" — Cato
as the composition of

(id(enparyer ¥ N(0)?P)™: ((€hpA*)*P x N(Rind"™)?P)™ — ((Chp™")°? x N(Rind)*?)"

and ehpArEOI. Taking the right Kan extension of EO! along the inclusion

ChpAr
((€hp™)?P x N(Rind"™)°P)T — ((€hp™*)?P x N(Rind)? on(gindyer N(Rind"")oP)!
induced by ji, and restricting to ((€hp™")°? x N(Rind)°?)" via jo, we obtain the desired map

ehpA?EOI (7.1).
The construction of (7.2) is similar. We have the map

B0 55 (5 (((ChpA") x N(Rindgs,)) Lor) 2, - Cat,

where RindfY . = Rind™" X ging Rindm.tep in which the first functor in the fiber product is 7.
Taking the right Kan extension of ehpADfEOII along the inclusion

03,2y ((€hp(") P x N(Rind, ) %) ™) 24
< 85 13 (((BhpE")” x N(Rindry-sor)” ON(Rindpy.,)or N(Rindte,) %)™ 7))
induced by ji, and restricting to 557{2}(((€hpér)°p X N(Rindm_tor)OP)H’Op)i%gt“ via jo, we obtain
the desired map ehpAD?EOH (7.2).
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By the similar process, we obtain enhanced adic operation maps for higher Deligne-Mumford
stacks:

enpp EO': ((Chp”M)7P 5 N(Rind)?)™ — Catee,
and a map
enp EO™: 65 03 (((€hpP™) P 5 N(Rindior) 7)™ P) ) — Catoo,
satisfying the obvious compatibility properties with higher Artin stacks.

7.2. Properties of enhanced adic operations. In this section, we study properties of the
two enhanced adic operation maps constructed previously, in a way parallel to the non-adic ones
in §5.4.

To simplify notation, we will only discuss properties for higher Artin stacks, that is, the two
maps (7.1) and (7.2). We will leave the analogous discussion for higher DM stacks to readers.

Proposition 7.2.1. We have

(PO): (Monoidal symmetry) The functor ehpA?EOI is a laxz Cartesian structure (Remark 2.3.6),
and the induced functor ehpA?EO® = (ehpA?EOI) factorizes through CAlg(Caty, )

(P1): (Disjointness) The map ehpA?EO(@ sends small coproducts to products.

(P2): (Compatibility) The restrictions of ehpA?EOI and ehpé?EOII to the common domain

((ChpAF)°P x N(Rind_ter) )T are equivalent functors.

thA?EOI on an object ((X1,A1),...,(Xn,An)) in the target

pr,st,cl*

Proof. By construction, the value of
is an oco-category equivalent to

[ M) HL®XZ,A ©)
i=1 i=1 E.

if A; = (5, A;). We also note that the inclusion functor
CAlg(Catoo ) . q — CAlg(Caty)

preserves small limits. Therefore, (P0) and (P1) follow immediately. (P2) is clear from the
construction. O

pr,st,c

Before discussing the other properties, we introduce more notation. Similar to the non-adic
case, we have the map

(7.3) ATEO] : 0 23 N(ChpH)Fr) x N(Rindggor)” — Prly
induced from (7.2).
Evaluating (7.1) at the object (1) € Fin,, we obtain the map
(7.4) enpAr EO™: N(€hp™h) 7P x N(Rind)? — Pr;.
Note that this is equivalent to the map by restricting (7.3) to the second direction, on
N(thAr)OP X N(Rindq_¢o,)°P. Taking right adjoints, we obtain the map
(7.5) enpA O, N(Chp™™) x N(Rind) — Prl.
Restricting (7.3) to the first direction, we obtain the map
(7.6) enpAtBO) N(Chpa ) p x N(Rindg_4or)%? — Prk.
Again by taking right adjoints, we obtain the map

(7.7) ehpArEo N(Chp)% x N(Rindg._r) — Pri.
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More concretely, we have the following enhance adic operations:

1L: f**: D(X,N)a — D(Y, A)a, obtained by applying (7.4) to a morphism f: Y — X in Chp™
and an object A = (£, \) € Rind. It coincides with the limit of functors f7 : D(X, A(§)) —
D(Y,A(€)) over E°?, and underlies a monoidal functor f*®*: D(X,\)¥ — D(Y,\)?
obtained from ehpA?EO@).

1R: fia: D(Y,A)a — D(X, \)a, obtained by applying (7.5) to a morphism f: ¥ — X in Chp™*
and an object A € Rind. It is right adjoint to f**.

2L: fi.: D(Y,\). — D(X,)\)., obtained by applying (7.6) to a morphism f:Y — X in
thér and an object A = (E,A) € Rindg.to,. It coincides with the limit of functors
fer: D(Y,A(E)) — D(X,A(§)) over =P,

2R: f'*: D(X,A)a — D(Y, \)a, obtained by applying (7.7) to a morphism f: Y — X in thér
and an object A € Rind_io,. It is right adjoint to fi,.

3L: — (%)X —: DX, N)a X D(X,A)a — D(X, N)a, the symmetric tensor product obtained from
Proposition 7.2.1(P0) for every object (X, \) of Chp™" x N(Rind).

3R: Hom% : D(X, NP xD(X,N)a = D(X, \),, induced from —éx — in the same way as Hom x
was induced from — ®x — in §6.2. In particular, for every object K € D(X, \),, we have
a pair of adjoint functors (— (%)X K, Hom?% (K, —)).

4L: 7: D(X,A)a — D(X, X)a, obtained by applying (7.4) to an object X € €hp™ and a
morphism 7: X — X of Rind. It is symmetric monoidal.

4R: 7. D(X, N ). — D(X, ), which is a right adjoint of 7*.

Proposition 7.2.2. Let f: Y — X be a morphism of thAr and A an object of Rind.

(P3): (Conservativeness) If f is surjective, then f**: D(X,A)a = D(Y, N)a is conservative.
(P4): (Descent) Suppose that f is smooth surjective. Then (f,idy) is of universal ehpA‘;‘EO@—

descent. If X belongs to thér and and X\ belongs to Rindg i, then (f,idy) is of uni-
versal ehpA";IEO!—coclescemf. See Definition 3.3.1 for the definition of (co)descent.
Proof. (P3) follows from the construction and the fact that

lim D(X,A®) » lim DY, A())
N(=)er N(Z)r

is conservative if each functor D(X, A(§)) — D(Y, A(§)) is, where A = (E, A). The latter is true
as f is surjective.

Now we consider (P4). The universal descent property for ehpA?EO® follows from the construc-
tion, the same property in the non-adic case, and (the dual version of) [52, Proposition 4.3.2.9].
The universal codescent property for ehpA?EO! follows from the construction, the same property
in the non-adic case, and [53, Proposition 4.7.4.19]. Note that condition (c) in [53, Proposition
4.7.4.19] is fulfilled by the Poincaré duality, namely, Theorem 6.2.9. g

Proposition 7.2.3 ((P5) Smooth Base Change). Let

g9
E——

W
|
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be a Cartesian diagram in thér where p is smooth. Then for every object A of Rindr_io,, the
following square

D(W, ) < D(Z, N)a

-

®(Y7 )‘)a <~ D(Xa A)a
s right adjointable.

Proof. This follows from the construction, the same property in the non-adic case, and Lemma
4.3.7. O

Now we consider the usual t-structure on D(X, \) for an object (X, ) € Chp™" x N(Rind).
Recall from [53, Definition 1.4.4.12] that, for a presentable stable co-category D, a t-structure'*
is accessible if the full subcategory DSV is presentable. For a scheme X € 8ch?®*P, the usual
t-structure on D(X, \) is accessible by [53, Proposition 1.3.5.21]. For a higher Artin stack X,
the usual t-structure on D(X, ) is accessible by construction Lemma 4.3.9(3).

Suppose that A = (Z,A). For n € Z, we let DS™(X, ), be the full subcategory of D(X, \)a
spanned by objects K = (K¢)gez with Ke € DS™(X, A(€)). Put

DZ"(X, N)a = DS"L(X, N
as a full subcategory of D(X,\).. By Lemma 3.3.4, we have an equivalence
DX, A)a =~ lim DS"(Y,A(E)).
N(E)er
Here, we have used the fact that transition functors, which are (derived) extension of scalars,
are left exact. In particular, DS™(X,\), is presentable; the inclusion DS"(X,\), € D(X,\)
preserves all small colimits; and DS"(X,\), is closed under extension. By [53, Proposition

1.4.4.11(1)], the pair (DS"(X, \)a, DZ"(X, \).) define an accessible t-structure, called the usual
t-structure, on D(X, X),. We have truncation functors

7S D(X, N)a = DSUX,N)a, 72" D(X, N0 — DZ(X, N)a

a

for every n € Z.

Remark 7.2.4 (P6). We have the following remarks concerning the above t-structure.
(1) The constant sheaf Ax = (A(§) x)eez € D(X, N), belongs to the heart

DY (X, N)a = DSUX, N)a NDZO(X, N\,

by Lemma 7.2.5 below.

(2) For an object A of Rind_¢o, and an object X of th%r, the auto-equivalence — ® Ax (1)
of D(X, )\, is t-exact.

(3) The wusual t-structure on D(X,\), is accessible. Moreover, the intersection
DS=®(X,N)a =), DST"(X, \)a consists of zero objects.'®

(4) The functors f**, — ®@x —, 7** are all left t-exact (that is, preserve DS™). The functors
fia, Hom%, 7., are all right t-exact (that is, preserve D>").

(5) Tt follows from Lemma 6.2.15 that fi,[2d] is left t-exact, hence f'*[—2d] is right t-exact. In
particular, if f is a smooth morphism in (‘fhpér and \ is in Rindq_¢oy, then f** ~ f'3[—2d]
is t-exact.

l4pg before, we use a cohomological indexing convention, which is different from [53, Definition 1.2.1.4].
15Unlike the non-adic case, D(X,\)a is not right complete in general. See Example 7.3.9 below. See also
Corollary 7.6.13 below for a positive result.
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Lemma 7.2.5. Let n € Z and let D(X,\)Z" be the full subcategory of D(X,\). spanned by
objects K = (K¢)eez with Ke € DZ™(X, A(€)). Then D(X,\)Z" C DZ"(X, \)a.

Proof. Let K' € DS"1(X,)\), and K € D(X,\)2". Then K =~ @N(E)operf’ where
re: D(X,A)) — D(X, N, is a right adjoint to the projection D(X,N), — D(X,A(£)). We
have

Homh@(X’A)a(Kl,’rgKg) ~ Hoth(X’/\(g))(Ké, Kg) =0.

It follows that Homypp(x x), (K, K) = 0. -

The functor —(d): D(X, ) — D(X, ) from §4.1 Input II restricts to a functor
—(d): D(X,N)a = D(X, N)a
for every integer d. The proof of the theorem below will be given in the next section, after we
introduce adic complexes.
Theorem 7.2.6 ((P7) Poincaré duality). Let f: Y — X be a morphism of Chpa' that is flat
and locally of finite presentation. Let A be an object of Rind_io.. Then
(1) There is a functorial (in the sense of Remark 4.1.6) trace map

TI‘f: Tfof[a)\y<d> — >\X

in the heart DV (X, \), for every integer d > dim™ (f).
(2) If f is moreover smooth, the induced natural transformation

ug: fia o ff(dim f) — idx
is a counit transformation, so that the induced map
Fdim f) = [ DX, N = DY, N
s a natural equivalence of functors.

We summarize some other properties of enhanced adic operations in the following theorem.

Theorem 7.2.7. We have

(1) The Kinneth Formula, namely Theorem 6.2.1, holds in the adic case.

(2) The Base Change, namely Corollary 6.2.2, holds in the adic case.

(8) The Projection Formula, namely Corollary 6.2.5, holds in the adic case.

(4) The following statements hold in the adic case as well: Proposition 6.2.4, Proposi-
tion 6.2.5, Proposition 6.2.8, Proposition 6.2.11, Theorem 6.2.13, Corollary 6.2.14, and
Lemma 6.2.15.

Proof. The properties follow by the same proofs in their non-adic counterparts. |

7.3. Relation with adic complexes. In this section, we define a natural full subcategory
D(X, \),, of D(X,\) consisting of adic complexes and show that there is a canonical equivalence
D(X, \)], ~ D(X,\), of co-categories.

Let X be an object of Chp™*, and A = (Z, A) an object of Rind. For every morphism ¢: & — ¢’
in =, there is a commutative diagram in Rind of the form

i

(B, A) == (e, Aje) ——= ({€}, A(6))

|- ¥

(2 8) << (50, Ajer) > ({€1}, A(€1),
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which induces the following diagram in Prl:

(7.8) D(X, ) — > D(X, A/e) <—— D(X, A(€))

o =
ig @
i* *
/

D(X,A) —= D(X, \jer) < D(X, A(€)),

where /¢ = (:/g,A/é) Let pes (resp. pers) be a right adjoint of 2 (resp. pi) and let
Qg P Pers = pexiy, be the natural transformation.

Definition 7.3.1 (Adic complex). We say that an element K € D(X, ) is an adic complez if
the natural morphism

ap(ig K): @ peraig K — perisic K
is an equivalence for every morphism ¢: { — ¢’ in E. The target of a,(ig,K) is equivalent to
pexigK. It is clear that adic complexes are stable under equivalence. Denote by

D(X, N\, CD(X,\)
the full subcategory spanned by adic complexes.

Lemma 7.3.2. Let f: Y — X be a morphism in Chp™. If K is an adic complez in D(X, N),
then f*K is also an adic complex in D(Y,N). If [ is surjective, then the converse holds as well.

Proof. The first statement follows if we can show that the following diagram

(7.9) D(X, Ae) e D(X,A€))
f*i J/f*
DY, Aje) ~—— D(Y,A(€))

is right adjointable. By the construction of EO! and Lemma 4.3.7, we may assume that f

ehpAr
is a morphism in 8ch9“*?. Then the following diagram

MOd( A/g) <7 MOd(Xeta A(&))
f*l if"
Mod( /¢ A/g) <L MOd( ét» A(&))

has a right adjoint, which is

Mod( A/g) — Mod (X, A(€))

T

*

Mod (Y, /¢, A¢) — = Mod(Yz, A(€))

where s¢: {€} — E /¢ is the inclusion map. Thus, (7.9) is right adjointable.
The second statement follows from the first one and property (P3) for ehpArEOI. O

In general, if A = (£, A) is an object of Rind and & € E, then we have successive inclusions

e ({E1,A0) = (Ee.Aje) = (EA)
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which induce the evaluation functor (at §)
eg: D(X,A) = D(X, A(€))

for a higher Artin stack X. As s¢ Is equivalent to pe., ef and pe, ot are equivalent. For brevity,
we sometimes also write K¢ for eZK for an object K € D(X, A).
The functor
[Te: Dx,n) = ] Dx,A©)
EeE €=
is conservative. This is obvious when X is in 8ch9*®. The general case follows, because
simplicial limits of conservative functors are conservative.

Lemma 7.3.3. Suppose that = admits a final object §. Then the functor p;: D(X,A(£)) —
D(X, ) is fully faithful with essential image D(X, \),.

Proof. The fact that the image of the functor p; is contained in D(X, )], follows from Definition
7.3.1 and the natural isomorphism between pg/, and sf, as in (7.8) for an arbitrary object ' of

—_
—
—

To conclude, we only need to show that for every adic complex K € D(X, \)., the adjunction
map png*K — K is an equivalence. Since the functor HE’ c= ez, is conservative, this is equivalent
to showing that the map 3: ef/pipe. K — €f K is an equivalence for every object & eZ Let g
be the map & — £. Since K is an adic complex, the composite

~x ~ . B .
*pesK =5 Perapfr @ pesK = perilpipe K = perail K

is an equivalence, where we adopt the notation in (7.8). Moreover, we have shown that « is an
equivalence as pers > s¢. Therefore, £ is an equivalence. (|

Proposition 7.3.4. The inclusion D(X, )", — D(X,\) is a morphism in PrL.
Proof. By definition, the inclusion D(X, ), C D(X, ) fits into the following diagram
D(Xa A):l ngED(Xa A/f):m
l Hs _ i i
@(X’)\) : H{eEQ(XvA/E)a

which is a pullback diagram in Cat., by Lemma 7.3.5 below. By Lemma 7.3.3, the inclusion
D(X, Nje)i = D(X, Aj¢) is equivalent to pg, which is a morphism of Prl. Therefore, the right
vertical arrow is a morphism in Pr™ as = is small. Moreover, the functor nga ZZ preserves small
colimits since each 7 does and = is small. Therefore, the inclusion D(X, ), — D(X, ) is a

morphism in Prl, because the inclusion Prl C Cat., preserves small limits. g

Lemma 7.3.5. Let D be a full subcategory of an oo-category C and f: D — C be the inclusion.
Then the pullback of f in the category Seta by any functor g: €’ — € with source in Caty, is a
pullback in Cat.

Proof. This follows immediately from Lemma 3.3.4 applied to the pullback of ide by g. O

Next, we will construct a natural functor

(7.10) D(X, N\ = D(X,\)a = @1 D(X,AE))
N(E)or
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and show that it is an equivalence. We have a diagram (£°°)¢ — Rind sending £ € Z to A /¢ and
the left vertex to A, which gives rise to a functor

D(X,\) — lim DX, Aje)-

N(E)°r
It is clear that for every object { € £, g sends D(X, A, to D(X, Aj¢),; and for every morphism
p: &= ¢ inE, i sends D(X, A/er), to D(X, Aj¢),. Therefore, by restricting to full subcategories,
we obtain a functor
D(X, N\, — N% D(X, Nje)a-

By Lemma 7.3.3, the right-hand side is equivalent to

lim DX, A()) = DX, A,

N(Z)er

Thus, we obtain the desired functor (7.10).

Theorem 7.3.6. For objects X of Chp™* and A
D(X, ), = D(X, Na

(2, A) of Rind, the functor

lim DX, A())
N(Z)er

(7.10) is an equivalence of oco-categories.

We need some preparation before the proof. Let X be an object of 8ch9°*°P. For simplicity,
we will write X for Xg as well. By definition, D(X, ), is a full subcategory of D(X,\) =
D(X=,A) = D(Mod(X=,A)). For every object £ of =, we have an evaluation functor

er: Mod(X=, A) — Mod (X, A())

at £ on the level of Abelian categories. It is exact and admits a (right exact) left adjoint functor

(7.11) eer: Mod(X, A(€)) — Mod(X=, A).
Moreover, we define a truncation functor

(7.12) t<e: Mod(X=,A) — Mod(X=, A)
such that for a A-module F, € Mod(X=, A), we have

Fo if¢<¢
(t<eFo)e = {0

It is exact and admits a right adjoint.

otherwise.

Proof. By Lemma 7.3.2, Lemma 3.3.4, property (P4) for @hpArEOI, and Proposition 7.2.2, we
may assume X € Sch9¢*P,
We first study the functor

a: D(X,N), = lim DX, AE))
N(E)ep
from the point of view of coCartesian fibrations. First, we have a functor A! x N(Z) — Cat,
sending Al x (p: & — £') to the square
Pex

ZD(XE/f,A/g)

Pery

D(X=/¢', Ajer) —= D(X, A(E")).
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This corresponds to a projectively fibrant simplicial functor F: €[N(D)] — Set}{, where D =
[1] x E. Let ¢p: €[N(D)] = D be the canonical equivalence of simplicial categories and put

F = (Fibr? o St;;%p o UnE(D)Dp)f}": D — Set}.

We write ' in the form F: [1] — (Set{)=. Applying the marked unstraightening functor Un;f
for the weak equivalence of simplicial categories ¢: €[N(Z)°?] — E°, we obtain a morphism
a: F1 — Fy of Cartesian fibrations in the category (SetZ)/N(E)OP. Moreover, by [52, Corollary
5.2.2.5], both F| and F, are coCartesian fibrations as well, but & does not send coCartesian
edges to coCartesian ones in general. By a similar argument, we have a map

D(XZ,A) = MapySen (N(2)P, F1) = Map}z)er (N(2))%, (FL, €)),
where € is the set of coCartesian edges of Fj. Composing with the obvious inclusion
MapCNO(%ZZ (N(E)P, F1) € Mapy z)or (N(E)°P, F1) and Mapyg)er (N(2)°P, &), We obtain a map
a': D(X=, A) — Mapy(z)er (N(E), F).
We have the equivalence

Map§i Gt (N(2)7, F2) = lim D(X, A(€))

Zor

by [52, Corollary 3.3.3.2], and the following pullback diagram
D(XE, A), —*> Map(E}os (N(E)P, Fy)

L

D(XEAN) —— Mapy z)or (N(E)P, F»)

by the definition of adic complexes, where vertical arrows are inclusions. We also note that o/
commutes with small colimits by [52, Proposition 5.1.2.2]. Thus, the goal is to show that « is
an equivalence.

To construct an inverse 8 of a, we use A =: the category of simplices of =. Then all n-cells
of N(A /z) are degenerate for n > 2. Define a functor

B’ N(A%) — Fun(Mapy zor (N(2)7, F2), D(XZ, A))
sending a typical subcategory £ — (§ = ¢') < &' of Az to
LGE! o € <— t<5 o LGEI! o €gr —> LGE/! o €ery

where €¢: Mapy(z)er (N(2)%, F2) = D(X, A(§)) is the restriction functor to the fiber at §. The
functor Fun(a/, D(X=,A)) o 8’ extends to a functor N(A‘/”é)'> — Fun(D(X=,A), D(X=,A)) car-
rying (§ = (£ = &) «= &) to

Legioe o o <— t<goLegnoeso o —— Legnoegr o o

T~

id
which induces a natural transformation
(lim 3') 0 @' ~ lim(Fun(a/, D(X=,A)) 0 f) — id.
Now we put
B = 1lim §' | Mapfi)es (N(E)7, F).
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It is easy to check that 3 takes values in D(X=, A),.
We show that the induced natural transformation §oa — id is an equivalence. Pick an object
K of D(X=,A),. We need to show that the diagram

Bt N(AZ) = D(XZ,A),

depicted as
LeggKg < tggLeg/gKE/ —_— Leg/gKgl

~4

K
is a colimit diagram. We only need to check this after applying e, for every & € E, since e,
commutes with colimits. The composite functor ef o Bz has value (equivalent to) Kg, (resp.
0) on the cone point, vertices {{} and (§ — &') of Az for £ > & (resp. otherwise), with all
morphisms being either identities on K¢, or 0, or the zero morphism 0 — K¢,. It is clear that
€g, © Bk induces an equivalence lim(eg, o B | N(A‘/’g)) ~ Kg, in D(X, A(&)).
For the other direction, that is, a natural equivalence o o § — id, we note that the functor
Funyzyor (N(E), F3),a’) o B also extends to a functor
N(A(/’é)D — Fun(Mapyz)er (N(E)?, F2), Mapy zyor (N(E), F2))
carrying (£ — (£ = &) + &) to

o/ oLegoeg <—— ' otgeoLegoeg —a’ oLegn o eg

T~

id

which induces a natural transformation

o o (hgl B ~ Hg(FunN(E)op (N(E)P, Fy),a’) o 8') — id,
where the equivalence of two functors is due to the fact that o’ commutes with colimits. Re-
stricting to Maplc\?(cga)“ﬂﬁ, (N(E)°P, F,), one obtains a natural transformation « o 8 — id which is an
equivalence by an argument similar to the previous one. Therefore, « is an equivalence and the
proposition follows. O

By Theorem 7.3.6, in what follows, we will identify D(X, A), with D(X,\),. In particular,
we will regard D(X, \), as a full subcategory of D(X, A).

Remark 7.3.7. We have the following remarks.

(1) When we regard D(X, \), as a full subcategory of D(X, ), Ax coincides with the con-
stant sheaf in D(X, \).

(2) By Proposition 7.3.4, the inclusion functor D(X, \), — D(X, ) admits a right adjoint,
which we denote by Rx: D(X, ) — D(X, A)a. It is a colocalization functor [52, §5.2.7].

(3) Let f: Y — X be a morphism of Chp*". The functor f*: D(X,\) — D(Y, \) preserves
adic complexes, and the induced functor f*: D(X,\). — D(Y, A). coincides with f**
up to equivalence. The functor f., is equivalent to the composition of the inclusion
DY, N)a — DY, M), fo: DY, A) = D(X, A) and the functor Rx.

(4) Let f: Y — X be a locally of finite type morphism of thér, and suppose that A\ €
Rind top- The functor fi: D(Y, ) — D(X, A) preserves adic complexes, and the induced
functor fi: D(Y,\)a — D(X,\). coincides with fi, up to equivalence. The functor f'
is equivalent to the composition of the inclusion D(X,\). — D(X,A), f': D(X,\) —
D(Y,A) and the functor Ry .
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(5) The functor — ®@x —: D(X, ) x D(X, ) = D(X, \) preserves adic complexes, and the

induced functor — @x —: D(X, N)a X D(X,N)a — D(X, \). coincides with — ®Sx — up
to equivalence. The functor Hom3 is equivalent to the composition of the inclusion
D(X, NP x D(X,N)a — D(X, AP x D(X, ), Homx and Rx.

(6) We have DS™(X,\), = DS*(X,\) N D(X, \), for every n € Z.

(7) Theorem 7.3.6 also holds if X is a topos with enough points.

Proof of Theorem 7.2.6. For (1), we note that fi, Ay (d) = fidy(d) € DS°(X,\) by part (1) of
(P7) in §4.1. Thus, by definition, fi,\y(d) € DS°(X,\),. Note that we have a trace map
fidy (d) — Ax in the non-adic case. Applying 72°, we obtain the desired trace map

a
Try: 72° fiady (d) = 720 fidy (d) — 72%x = Ax

which is a map in DY (X, A)a. The functoriality is automatic.

For (2), by the Poincaré duality f*(dim f) ~ f' in the non-adic case, f' preserves adic com-
plexes hence f'* = f'|D(X, A)a. Then it follows from the corresponding argument in the non-adic
case.

|
The following is a variant of Proposition 6.2.8.

Proposition 7.3.8. Let X be an object of Chp?, m: N = X a perfect morphism of Rind, and
K an object of D(X, A)a. Then

(1) The natural transformation m(— @ 7*K) = (m—) ®x K is a natural equivalence.
(2) The natural transformation w*Homy (K, —) — Homy (7*K,7*—) is a natural equiva-
lence.

Proof. As in Proposition 6.2.8, the two assertions are equivalent and for (1) we may assume that
X is an object of 8ch¥*P. In this case, the proof of (2) is similar to that of Lemma 3.2.8.
Write A = (Z,A) and \' = (2, A'). As the family of functors (ef,)¢re=s is conservative, it suffices
to show that (2) holds with 7 replaced by e¢s and by m o egr. In other words, we may assume
=" = {x}. We decompose 7 as

(1, A) 5 (€L A©) 5 (5,0) e -5 (E,A).

We show that (2) holds with 7 replaced by i¢, by s¢, and by t. The assertion for i¢ is Proposition
6.2.8. The assertion for s¢ is trivial as s{ ~ pg, and png*K’ ~ K’ for every object K’ of
D(X, (E,A)/e)a by Lemma 7.3.3. It remains to prove (2) with 7 replaced by ¢. Changing
notation, it suffices to prove (2) under the additional assumption = = &’ = {*}. Then =, applied
to (2) is given by

me* Homp: (K, —) = Homp/ (K, mem™ =) =~ m,Homp/ (7" K, 7% =),

which is a natural equivalence since m,m*— ~ Homp (A’ v —). We conclude by the fact that .
is conservative in this case. ]

Example 7.3.9. We give an example for which DZ>®(X, \), = N, D>"(X, \), contains nonzero
objects. Let k be a ring and let A = k[zg,x1,...] be the polynomial ring in indetermi-
nates xg,x1,.... Consider the functor As: N°P — Ring carrying n to k[xg,...,&n_1] =~
A/(p, Tpt1,...). Consider the homomorphism of A,-modules ¢,,: A, — A,[t] sending 1 to
Z?:_Ol z;t'. We define a complex K of A,-modules by taking K,, = Kos®(¢,) to be the Koszul
complex. The transition maps are given by the obvious projections. Note that K, € D>".
Clearly K is adic. We claim that K € DZ*°(X, (N, A,))a. Let K' € DS"71(X (N, A,)), for
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some n > 0. Consider the morphism j,: (Nxp, Ae >n) — (N, A,). Since K’ is adic, we have
Jniji K ~ K’. Thus

Homy,p x,v,4,)) (K, K) = Homyp (x,1v,a,)) (Gn1dn K, K) = Homyp (x (v, A, 500 (0 K 50 K) = 0.

It follows that K € (DZ*°(X, (N, A,))a. For X nonempty and k nonzero, K is nonzero. In
particular, the t-structure on D(X, (N, A,)). is not right complete.

We end this section with more results on the preservation of adic complexes under Noetherian
assumptions. Put

DX, N = D(X,A)a N DH (X, N)
for « =+, —, b.16

Proposition 7.3.10. Let A = (Z,A) be an object of Rindp_ior- Let f: Y — X be a morphism
of thér that is locally of finite type such that X is locally Noetherian. Then

(1) f« restricts to fea: D(Y, ,\)55”) — D(X, )\)S_) if [ is quasi-finite and quasi-separated and
fra: D(X,N)a = D(X, M), if in addition f is 0-Artin and X is locally finite-dimensional.

(2) f' restricts to f**: D(X, )\);(j) — DY, )\)ng) and, if X is locally finite-dimensional,
£ D(X, A)a — D(Y, \)a.

(3) Assume that A(§) is Noetherian for every £ € E. Then Homyx restricts
to Homi: (DX, M) x DX, N = DX, N and, if X is locally
finite-dimensional, Hom¥ : (D(X,)\)gf,tc))ol’ x DX, Na — DX, Aa- Here,
DX, N = DX, N)a N DEL(X, N).

Proof. The second assertion of (1) and the second assertion of (2) follow from Proposition 6.3.2.

For the first assertion of (1), we reduce easily to the case of complexes bounded from below
and where X is a coherent scheme. By the usual descent spectral sequence, we then reduce
to the case where Y is also a scheme. In this case, the assertion is the projection formula in
[51, Lemma 1.20(d)].

For the first assertion of (2), we reduce easily to the case of affine schemes, and then to the
case of a closed immersion, which follows from (1).

For (3), we may assume that X is a coherent scheme. By Proposition 7.3.8 below, it suffices
to show that for all &’ < € in Z, K € Deons(X, A(€)) of finite tor-dimension, and L € DT (X, A(£))
(or L € D(X,A(§)) in the case where X is finite-dimensional), the canonical morphism

Homx ) (K, L) @ A(£") = Homx acey) (K, L® A(E))
=~ Homx,a(e)) (K @a) A€), L@ace) AE))

is an equivalence. For this, we may assume that K = 5K’ with j: U — X an immersion and
K' € D(U,A(§)) is a perfect complex. Then

}ComX(K, _) = j{omU(KlvA(gn ®]* -
We conclude by (1). O
16For « = 4+, b, this intersection does not coincide in general with D(*>(X, A)a, the one given by the usual t-

structure on D(X, \), introduced in §7.2, for example if = has a finite object £ and A(£’) is of infinite tor-dimension
over A(€) for some £’ € =. However, see Remark 7.6.12 below.
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7.4. Constructible adic complexes. In this section let A = (2, A) € Rind such that A(¢) is
Noetherian for every £ € =. For a higher Artin stack X € thAr7 we put

D(X, Nae =D(X, N)a N Deons(X, N),

DX, N = D(X, X)a N DX, M),
where % = +, —, b. Note that D(X, A)$d = D (X, A)a N Deons(X, A) always holds.
Proposition 7.4.1. Let f: Y — X be a morphism of higher Artin stacks. Then f* and —®x —
restrict to the following functors:
1L f*2: D(X, Naec = DI, Narc.
3L — @x —: DX, V) x DX, A — DX, N
In particular, we have a symmetric monoidal subcategory (D(X, /\)S;;))@ of D(X,\)®. Moreover,
if A(§) is Noetherian and O-torsion for every £ € E, X is O-coprime, f is of finite presentation
(Definition 5.4.3), then fy restricts to the following functors:
2Lt fia: DYV, AN = DX, N and, if fis 0-Artin, fia: D(Y, Nae — DX, M.
Proof. This follows immediately from Proposition 6.4.4. g

As in §6.4, to state the results for the other operations, we work in a relative setting. Let S
be a [J-coprime higher Artin stack. Assume that there exists an atlas S — S, where S is either
a quasi-excellent scheme or a regular scheme of dimension < 1.

Proposition 7.4.2. Suppose that A € Rindpio,. Let f: Y — X be a morphism of @hpf?tr/g.

Then f., f', Homy restrict to the following functors:

1R’ f.a: D(Y, )\)S;) — D(X, )\);(::) if [ is quasi-compact and quasi-separated (Definition 5.4.3)
and fia: DY, Naec — D(X,Nac if in addition f is 0-Artin and S is locally finite-

dimensional.
2R”: f2: D(X, /\);fc) — DY, /\)gfc) and, if S is locally finite-dimensional, f*: D(X,\)ac —
DY, Nac-

3R’ Hom? : (D(XJ\)Q?)O” X D(XJ\)SE) - D(X, )\);(jc) and, if S is locally finite-dimensional,
Hom? : (D(X, MIM)P x D(X, Nae = D(X, Nae-
Note that in 3R’ above, we do not need the assumption in Propositions 6.4.5 and 6.4.6 that
E/¢ is finite.

Proof. This follows from Propositions 6.4.5, 6.4.6, 7.3.8, and 7.3.10. (For the assertions on Hom?,
we use Propositions 7.3.8 and 7.3.10 to reduce to the case where = = {x}.) O

Note that D(X, /\)gftc) = D(X, ,\)éb(,? if for every £ € E, A(§) is a local ring and there exists a
morphism & — ¢ in = such that A(§) — A(&’) identifies A(¢') with the residue field of A(§). This
is the case if O is a Noetherian local ring of maximal ideal m and A = (N, A) with A(n) = O/m" 1.

7.5. Adic dualizing complexes. In this section, we construct adic dualizing complexes and
study the biduality properties in the adic case.
Let X be an object of Chp?, and A = (2, A) an object of Rind. Let  be an object of D(X, \)

(resp. D(X, A)a). By adjunction of the pair of functors — ® K := — @ x K and Hom(K, —) =
Homy (K, —) (resp. — K= — éx K and Hom?(K, —) := Hom¥% (K, —)), we have a natural
transformation

(7.13) dq: id = hHom(hHom(—, ), Q)

(7.14) resp. 05 : id = hHom® (hFHom?(—, ), Q)
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between endofunctors of hD(X,A) (resp. hD(X, \),), which is called the biduality transforma-
tion.t”

In the remaining of this section, we fix a [J-coprime base scheme S that is a disjoint union
of excellent schemes,'® endowed with a global dimension function. Let Rindm_qua be the full
subcategory of Rind.¢o, spanned by ringed diagrams A: Z°° — Ring such that A(§) is a (O-
torsion) Gorenstein ring of dimension 0 for every object £ of E.

Definition 7.5.1 (Potential dualizing complex). Let A = (2, A) be an object of Rind_qya. For
an object f: X — S of thf?tr/s with X in 8ch9“*P we say that an object € D(X, ) is a
pinned/potential dualizing complex (on X) if

(1) Q is an adic complex, and

(2) for every object £ of Z, Q¢ = ef2 € D(X, A(§)) is a pinned/potential dualizing complex.

For a general object f: X — S of thf?tr/s, we say that an object Q € D(X, \) is a pinned/potential

dualizing complez if for every atlas u: Xog — X with Xy in 8ch®P, ') is a pinned/potential

dualizing complex on Xj.

Proposition 7.5.2. Let f: X — S be an object of Chpf?tr/s and A an object of Rindg_qua1- The
full subcategory of D(X, \) spanned by all pinned/potential dualizing complezes is equivalent to
the nerve of an ordinary category consisting of only one object  with

mo(X)
Hom(©, ) = (g A(s)) .
3=
Moreover, pinned/potential dualizing complexes are constructible and compatible under extension
of scalars.

In the proof, we will use the following observation which is essentially [52, Proposition
A.3.2.27]. Let C: K¢ — Cats be a functor that is a limit diagram. Let X,Y be two ob-
jects in the limit oco-category C_,, and write X}, Y; the natural images in Cj for every vertex k
of K. Then Mape__ (X,Y) is naturally the homotopy limit (in the oo-category J of spaces) of
a diagram K — JH sending k to Mape, (X%, Yz).

Proof. We first consider the case where = = x is a singleton.

In this case, if X is in 8ch9°®°P  then the proposition is proved in [41, Exposé XVIII-A] (see
Remark 6.5.3). We also note that if (g is a pinned dualizing complex on S, then f'(Qs is a pinned
dualizing complex on X. We prove by induction on k that for an object f: X — S of thf}{ /s
with X in ChpF4T,

(1) For any two pinned dualizing complexes  and ', Mapp,(x A (52, ) is discrete;'?
(2) There is a unique distinguished equivalence o: 0 — Q' such that for every atlas u: Xg —
X with Xg in 8ch°*? | 4'0 is the one preserving pinning.
It is clear that once the equivalence o in (2) exists, it is compatible under f' for every smooth

morphism f. Choose an atlas u: Y — X (with Y in th(kfl)'Ar). Since v is of universal
ehpADrEO!—descent, both (1) and (2) follow from the induction hypothesis, the above observation,

171 fact, 8, can be enhanced to a natural transformation ¢ : id — Hom(Hom(—, ), Q) between endofunctors
of D(X, A), that is, hdq = dq; and similar for the adic case. We omit the details here since we do not need such
enhancement in what follows.

18A scheme is ezcellent if it is quasi-compact and admits a Zariski open cover by spectra of excellent rings
[31, Définition 7.8.2].

19More precisely, it means that MapD(XJ\)(Q, Q') is equivalent to a discrete set in K.
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and the fact that limit of k-truncated spaces is k-truncated (which follows from [52, Proposition
5.5.6.5]).

Then we show that Mapyx 4)(€2,©2) =~ mo Mapp x a) (€2, §2) is isomorphic to A™X) | Without
loss of generality, we assume that X is connected. Choose an atlas u =[], u;: [[;Y; = X with
Y; in 8ch9°*°P that is connected. We have the following commutative diagram

A 2 ™0 MapD(X’A) (Q7 Q)

|s

A——=@P,;m Mapp (y; a) (ui 2, uiQ).

Since w' is conservative, we know that the map [ is injective. Since the map
A — m Map,D(nA)(u!iQ,u!iQ) is an isomorphism for every i € I, we know that « is in-
jective. If we write elements of B mo Mapq,(y; ) (ui€2, uiQ) in the coordinate form (..., \;,...)
with respect to the basis consisting of distinguished equivalences, then the image of u' must
belong to the diagonal since X is connected. Therefore, o is an isomorphism. The fact that
pinned dualizing complexes are constructible and compatible under extension of scalars follows
from the case of schemes.

We then consider the case of general coefficient A = (£, A). We start by constructing a pinned
dualizing complex (25 x on the base scheme S. Recall that A )z is the category of simplices of Z,
whose n-simplices are degenerate for n > 2. For every object £ of =, denote by ()5 ¢ the pinned
dualizing complex in D(S, A(€)). Recall the functors e (7.11) and t<¢ (7.12). Define a functor
d: N(A/z) = D(S, A) sending a typical subcategory £ < (£ = &') — &' of Az to

L
LegQs,c <—— Leai(Qs,¢r @n(ery A(§)) = tcelegn s ¢ — Legnfds ¢

L ~
in which the left arrow is given by the distinguished equivalence Qs ¢ @p ey A(§) — Qse. It is
easy to see that (g ) = 1'&15, viewed as an element in D(S, ), satisfies the two requirements in

Definition 7.5.1, hence is a pinned dualizing complex. For an object f: X — S of thf}f/g, put
Qer=f !QS, A- Then it is a pinned dualizing complex on X. The rest of the proposition follows
from the fact that Qy  is adic, Theorem 7.3.6, the observation before the proof, and the same
assertion when = is a singleton. |
Definition 7.5.3. We introduce the following dualizing functors:
D=Dx = }Comx(f,ﬂka): @(X,)\)Op — @(X,)\),
D?* = D% == Hom% (—, Qxx): D(X, NP — D(X, Na.
Put D = hD and D* = hD?.

Proposition 7.5.4. Let (X, )\) be an object of Chp™* x N(Rind). Let K € D(X,\), be an object
such that dqy , . (ez K) is an equivalence for every object & of 2, where ¢ is the biduality transfor-
mation (7.13). Then 0¢,  (K) is an equivalence as well, where 6* is the biduality transformation
(7.14).

Proof. We need to show that the natural morphism K — D?D?K is an isomorphism (in the
homotopy category hD (X, A),). By definition, we have

D*D*K = hHom? (K, hHom® (K, Qx 1))
~ hiﬁxhﬂ{om(K, hiﬁxhﬂ{om(K, QX’)\))
~ hR xhHom(K, hHom(K, Qx 1))
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It suffices to show that the map dq, , (K): K — hHom(K, hHom(K, Qx ))) is an equivalence. In
fact, since K is adic, we have

eghHom(K, hHom(K, Qx ) ~ hHom(ezK, hIHom(egK, ey 1))
~ hHom(egK, hHom(egK, Qx ac¢)))
for every object £ € = by Lemma 7.5.5 below, which is equivalent to egK by the assumption. [

Lemma 7.5.5. Let A = (E,A) be an object of Rind, £ an object of E, and & an object of
D(X,N)a. Then the following diagram

-®@xK

D(X, ) D(X, N
egi - \Leg
D(X, A(E)) D(X, A(E))

is right adjointable and its transpose is left adjointable. In other words, the natural maps eg(L®x
efK) = (eall) ®@x K and egHomy (K, L") — Hom(efK,efL") are equivalences for objects L of
D(X,A(€)) and L' of D(X, N).

Proof. By Proposition 6.2.7, we may assume that £ is the final object of =. In this case, ef
can be identified with 7., where 7: (E,A) — ({&}, A(€)) is the projection. Since K is adic, the
morphism 7*egK — K is an equivalence. A left adjoint of the transpose of the above diagram is
then given by the diagram

D(X,A) =< D(X, A(€))

_®XK\L i—@x egK
D(X, X) ~———— D(X,A()).
The lemma follows by adjunction. O

7.6. The m-adic formalism.

Definition 7.6.1. Define a category PRing as follows. The objects are pairs (A, m), where A is a
(small) ring and m C A is a principal ideal generated by an element that is not a zero divisor. A
morphism from (A’,m’) to (A, m) is a ring homomorphism ¢: A — A’ satisfying ¢(m) C m’. Let
A, = A/m™. We denote by PRing, . (resp. PRingr,,,) the full subcategory of PRing spanned
by (A, m) such that (N, A,) belongs to Rindte, (resp. Rindg_ior)-

We have a natural functor PRing — Fun([1], Rind) sending (A,m) to (N,A,) = (x,A). In
what follows, we simply write A, for the ringed diagram (N, A,).

Let (A,m) be an object of PRing. In this section, we will show that adic complexes for A,
enjoy very nice properties. In particular, they are preserved by the six operations. We start by
stating a new characterization of adic complexes. Let X € @hpA]r be a higher Artin stack. Recall
that 7 is perfect in the sense of Lemma 3.2.8 and the functor

7 D(X,A) = D(X, A,)
admits a left adjoint m by Proposition 6.2.6 and a right adjoint 7.
Theorem 7.6.2. For every K € D(X, A,), the following conditions are equivalent:
(1) Ke D(X,As)a;

(2) K is in the essential image of ™;
(8) The adjunction map 7*m K = K is an equivalence;
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(4) The adjunction map K — 7*mK is an equivalence.
To prove the theorem, we need some preliminaries on 7* and its adjoints. We decompose m
into
id,
(N, Ay) Y7 (N Ay) & (%, A),
where Ay: N°P — Ring is the constant functor of value A. Let @ be a generator of m. The

following is a standard fact about derived completion. See [1] for variants.

Proposition 7.6.3. We have fiber sequences
mr K = K = All/w] @4 K,
Hom(A[l/w],K) = K = m, 77K,
functorial in K € D(X, A).

Proof. The two fiber sequences being adjoint to each other, it suffices to prove the second one.
We have a short exact sequence

0— Ze =+ Ay — Ao — 0,

where Zg = (- = A XFN X A). Applying — ®,, p*K, we obtain a fiber sequence
(7.15) Ze Qpy P K = p*K — 7K.

Let fo: Xo — X be a smooth atlas and let X, be a Cech nerve of fy. Then we have
K~ lim f,. f#K and 7*K =~ &iinfn*f;ﬂ'*K, where f,,: X,, = X is the induced morphism. Since
Hom(A[l/w], —) commutes with f,. up to equivalence, we are reduced to proving the second

fiber sequence for each X,,. By induction, we may assume that X is a scheme. In this case, by
Remark 3.2.10,

pe(Ze @y p7K) = Hom(lim(A =5 A =55 A — -+ ), K) = Hom(A[1 /=], K).
Moreover, we have p; =~ efj and pip* ~ id. By adjunction, it follows that id ~ p,p*. We conclude

by applying p. to (7.15). O

Corollary 7.6.4. For K € D(X,A), 7*K = 0 if and only if multiplication by w is an equivalence
on K.

Proof. If xw is an equivalence on K, then e} 7*K = 0 for all n. Conversely, if 7*K = 0, then, by
Proposition 7.6.3, K ~ Hom(A[1/w], K) and it suffices to remark that xw is an isomorphism on
A[l/@]. O

Corollary 7.6.5. The natural transformations
s> nfom,on*, wom,omt = ¥,
My —> T OT OTy, MyuOM Oy — Ty,

induced by the unit €: id — m,m* and the counit n: m*m, — id of the adjunction ©* - m, are
natural equivalences.

Proof. The composition of the two natural transformations on the first line (resp. second) is equiv-
alent to the identity. Thus it suffices to show that the two natural transformations induced by e
are natural equivalences. For every K € D(X, A), 7*Hom(A[l/w],K) = 0 and 7¥ek is an equiv-
alence by Proposition 7.6.3. For L € D(X, A,), Hom(A[l/w], mL) ~ m.Hom(r*A[l/w],L) =0
and €., is an equivalence by Proposition 7.6.3. (|
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Remark 7.6.6. Let A — A’ be a ring homomorphism and let ¢: (*, A’) — (x, A) be the correspond-
ing morphism in Rind. Then t* = A’®, — and t, is restriction of scalars. If ¢ is perfect, then ¢* ad-
mits a left adjoint, ¢;. In this case, we have an equivalence t*t)— ~ (t*t/A’) ®, —. More precisely,
the map t*t,K — (t*tiA") @4/ K, adjoint to the map K — (t*t.t* 6 A") @ K = t* . ((t*1 A") @4/ K)
is an equivalence. Indeed, t*t,— ~ (A’ ®x A') ® — and its left adjoint t*¢, is equivalent to
(AN @7 A')Y @5, — (which is also a right adjoint of t*t..).

Proof of Theorem 7.6.2. (4) = (2). Obvious.

(2) = (1). Since D(X,A) = D(X, A),, the image of 7* is contained in D(X, Ay )a.

(1) = (4). We denote by €e: id — 7*m the adjunction map. We will show that ex is an
equivalence for every K € D(X, A,),. Consider the inclusions

({n}, An) 2 (Ngp, Aecn) 22 (N, A).

We have K ~ li_n;neN Ity K o lix el entK,. Here in the second equivalence we used the equiva-
lence i} K =~ s,1K,,, which follows from the assumption that K is adic. We have a diagram

ire
n-€nl Kn

i K

n Z';;ﬂ'*men!Kn

i i:(ee"!/\n ®reK) i

’L':L(engAn @A, K) ifl(ﬂ'*ﬂ'!en!/\n QA K)

where the vertical arrows are equivalences. The vertical arrow on the right is given by the fact that
the source and target are both adic and the equivalence e} 7*me K, ~ t:t, 1K, ~ t5t A, Qa, K,
in Remark 7.6.6, where t,, := wmoe,: ({n},A,) — (x,A). Restricting the diagram to ({m}, A.,)
and taking colimit for n € N>,,, we see that e, ex is equivalent to e}, (ex, ®a, K). Thus, it remains
to show that €5, is an equivalence. By Corollary 7.6.5, the adjunction map 7* — 7* o m o 7 is
an equivalence. In particular, ep, = €+ is an equivalence.

(3) = (2). Obvious.

(2) = (3). This follows immediately from Corollary 7.6.5. O

Corollary 7.6.7. The inclusion functor D(X,Aqs)a — D(X, As) admits a left adjoint given by
m* om and a right adjoint given by m* o mw,.
Corollary 7.6.8. For any K € D(X,A), the following conditions are equivalent:

(1) K is in the essential image of m;

(2) The adjunction map mm*K — K is an equivalence;

(3) A[L/w] @y K = 0.
We let D(X,A)tor € D(X,A) denote the full subcategory spanned by K satisfying the above
conditions. Then m* and m induce equivalences between D(X, A)ior and D(X, Ae)a.

Objects of D(X, A)sor are said to be m®>-torsion objects. By (3), K € D(X, A)tor if and only
if H'K € D(X, A)sor for all i € Z.

Proof. We have (1) <= (2) by Corollary 7.6.5 and (2) <= (3) by Proposition 7.6.3. The last
assertion follows from Theorem 7.6.2. 0

Remark 7.6.9. Dually, we let D(X, A)compt € D(X, A) denote the essential image of the localiza-
tion functor m, o 7*: D(X,A) — D(X, A), which is also the essential image of 7. The functors
7 and 7, induce equivalences between D(X, A)compr and D(X, Aq)a.

We have seen that f*, fi, and —®x, — preserve adic complexes in Remark 7.3.7. We can now
prove that the other three operations preserve m-adic complexes, extending Proposition 7.3.10.
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Proposition 7.6.10. Let f: Y — X be a morphism of higher Artin stacks and let (A, m) be an
object of PRing. Then
(1) f« restricts to fea: D(Y,Ae)a = D(X, Ag)a.
(2) Homx restricts to Hom% : (D(X, Ae)a)® X D(X, Ae)a — D(X, Ad)a-
(3) f' restricts to f'*: D(X,Ae)a — D(Y, As)a if f is morphism of thér that is locally of
finite type and (A, m) is an object of PRingq ;-

Proof. The assertions for f, and Homy follow from the commutation of these two functors with
7* (Propositions 6.2.6 and 7.3.8). By Poincaré duality, the assertion for f' reduces to the case
where f is a closed immersion of schemes. This case follows again from the commutation of f*
with 7* (Proposition 6.2.7). O

Next we discuss a new t-structure on D(X,A,),. Recall that we already have the usual
t-structure (DS"(X, Ag)a, DZ™(X, Ay)a) on D(X, A,), from §7.2.

Put DS*(X, A)ior == D(X, A)ior N DS(X, A) and D2 (X, A)ior i= D(X, A)or N DZ"(X, A).
Since truncation functors on D(X,A) preserve D(X, A)tor, (DSHX, A)or, DZHX, A)tor) is a t-
structure on D(X, A)ior. Via the equivalence of co-categories in Corollary 7.6.8, we obtain a
t-structure (m*DSY(X, A)ior, T*DZH(X, A)ior) on D(X, A,)a, with truncation functors given by
771 and 7*721m. We denote the above t-structure by (DS%(X, Ag)a, DF%(X, Ad)a).

Proposition 7.6.11. Let X be a higher Artin stacks and let (A, m) be an object of PRing.
(1) The t-structure (DS°(X, Ae)a, DP0(X, Ad)a) is right complete.
(2) We have
DX, Ad)a € D (X, Ad)a € DX, Au)a,
DZHX, Ad)a € DPY(X, Ad)a € D(X,A0)Z° C DZO(X, AL)..
Here, D(X,A¢)Z* is introduced in Lemma 7.2.5.

a

Proof. (1) The right completeness follows from the criterion [53, Proposition 1.2.1.19]:
7*DZ1(X, A)tor is stable under countable coproducts and (1), m*D>"(X, A)or consists of zero
objects.

(2) Since 7*: D(X,A) — D(X,A.) has t-amplitude contained in [—1,0] for the usual t-
structures, we have DS(X, Ay)a € DSY(X, A)a and D7O(X, Ay)a € D(X, A,)Z°. The inclusion
D(X,Ae)2% € DZ°(X, As)a is Lemma 7.2.5. The other inclusions follow by orthogonality. [

Remark 7.6.12. Tt follows from Proposition 7.6.11(2) that D) (X, A,). = D(X, A
Corollary 7.6.13. The usual t-structure on D(X, As), is right complete.
Proof. This follows immediately from Proposition 7.6.11. ]

The t-structure on D(X, Ao, corresponding to the usual t-structure on D(X,A), can be
described as follows. We say that an object F of ZDO(X, A)tor is m-divisible if F X% Fis a
surjection or, equivalently, if HOn*J = 0.

Corollary 7.6.14. Let K € D(X, A)or-
(1) 7K € DSY(X, A,)a if and only if K € DSY(X, A)or and H'K is m-divisible.
(2) ™K € DZ%X,A,). if and only if K € DZ9(X, A)ior and HK contains no nonzero
m-divisible sub-object.
In other words, the usual t-structure on D(X, A), corresponds to the tilt (in the sense of [36],

[59]) of the usual t-structure on D(X, A)ior with respect to the torsion pair (T,T+), where T is
the class of m-divisible objects in DY (X, A)¢or. See also [6, §3.3].
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Proof. (1) Under the condition K € DSY(X, A)tor, H'm*K ~ H7*H'K is zero if and only if
7*K € DSO(X, A,).. Thus it suffices to show that DSO(X, A, ), = DfO(X, Ae)a NDSO(X[AY)a,
which follows from Proposition 7.6.11(2).

(2) By Proposition 7.6.11(2), 7*K € DZ°(X, A,), implies K € DZ%(X, A)o;. Thus we may
assume K € DZ°(X, A)ior. Then 7K € D2(X, A,), if and only if for every L € D(X, A,)a
satisfying 7*L € DS™1(X, A,)a, we have Hompp(x,A),., (L, K) >~ Homyp(x,a,), (7*K, 7%L) = 0.
By (1), 7*L € DS7Y(X, A,). if and only if L € DSO(X, A)¢or and HOL is m-divisible. In this case,
Homyp(x,A),., (L, K) = Homypo(x Ay, (HOL, HK). Assertion (2) follows. O

The following result is obvious.

Proposition 7.6.15. For every morphism f:Y — X of higher Artin stacks, f**: D(X,Ae)a —
D(Y, Ao)a is t-exact for the t-structures (D!@, D%O).

Proposition 7.6.16. Let f: Y — X be a morphism higher Artin stacks. Assume that one of
the following conditions hold:

(1) f =1 is a closed immersion; or

(2) f is locally of finite type and f is in Chply and (A, m) is in PRing._.,.
Then f*2: D(X,Ae)a — D(Y, Ay)a is t-exzact for the usual t-structures.

Proof. (1) By Corollary 7.6.14, it suffices to show that for 7 € DY(X, Ao that contains no
nonzero m-divisible sub-object, i*JF satisfies the same property. If G is an m-divisible sub-object
of i*F, then we have monomorphisms ,G — i.7*§ — F, which implies that § = 0.

(2) The case f smooth being already known, we reduce easily to (1). 0

Ezample 7.6.17. Without the assumption that f: Y — X is locally of finite type,
[ D(X,Ae)a — D(Y,As)a is in general not t-exact for the usual t-structures. Take X
to be the spectrum of an absolutely integrally closed valuation ring with valuation group
@2:_00 Q, ordered lexicographically. Take f to be the inclusion of the generic point Y of X.
The open subsets of X form a chain X = Uy 2 U—; 2 U_5 D -+ 2 (. Assume that m C A.
Consider the m®-torsion sheaf F € Mod(X¢, A) given by F(Uy,) = w"A/A for all n € Ngo,
with restriction maps given by the inclusions. The only m-divisible submodule of F is zero.
However, f*F = Alw~']/A is m-divisible. Thus, by Corollary 7.6.14, 7*F € DY(X, A,)a and
JorT = 7 [T € DY, Ad)a[1].

The results of this section also hold for X a topos with enough points.

Remark 7.6.18. Let X be a replete topos [9]. Since K € D(X,A) is derived complete if
and only if each HIK is, (DS?(X, A)compt, DZ°(X, A)compl) is a t-structure on D(X, A)compl,
where DSY(X, A)compl = D(X, A)compt N DSO(X,A) and DZO(X, A)compt = D(X, A)compl N
D>9(X,A). Moreover, for every L € DSO(X A,),, HOL is a surjective system. It follows
that 7.: D(X,Ae)a — D(X,A)compl i t-exact. Thus DSO(X,A), = 7*DSY(X, A)compl and
DZ9(X,A)a = 7*DZ9(X, A)compl-

7.7. Compatibility with Laszlo—Olsson (adic coefficients). We prove the compatibility
between our adic formalism and Laszlo—Olsson’s [48], under their assumptions.
Put O = {¢} where ¢ is a rational prime. Let S be a O-coprime scheme satisfying that
(1) it is affine excellent and finite-dimensional;
(2) for every scheme X of finite type over S, there exists an étale cover X’ — X such that
cdy(Y) < oo for every scheme Y étale and of finite type over X’;%°
(3) it admits a global dimension function and we fix such a function (see Remark 6.5.1).

2OAccording to our notation, cd, is nothing but cdp,.
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Recall from §6.5 that we denote thﬁi\//[g the full subcategory of Chpif: /s spanned by (1-) Artin
stacks locally of finite type over S, with quasi-compact and separated diagonal.

For the coefficient, we fix a complete discrete valuation ring A with the maximal ideal m and
residue characteristic £ such that A = lim A, where A, = A/m™*1 ] as in [48]. In particular,
(A, m) is an object of PRingr ., in our notation.

From the definition of D(X, Ae)a,c, which is the full subcategory of D(X,A.) spanned by
constructible adic complexes, [48, Proposition 3.0.10, Theorem 3.0.14, Proposition 3.0.18], and
Proposition 5.3.5, we have a canonical equivalence between categories

(7.16) hD(X, Ae)a,c = De(X, A),
where the latter one is defined in [48, Definition 3.0.6].

Proposition 7.7.1. For a morphism f:Y — X of finite type in th{}iv/[g, there are natural
isomorphisms of functors:

hf** = Lf*: De(X, A) = D.(Y, A),
hfea ~Rf.: DIV (Y,A) — DD (X, A),
hfin = Rfi: DI(Y,A) = DI(XA),
hf** =~ Rf': De(X, A) = De(Y, ),

=

h(— i —) = (=) & (=) DU, A) x DL, A) DLV A),
hHom% ~ Zhom, : D{7) (X, A)°PP x D) (X, A) — D (X, A)
that are compatible with (7.16). Here, on the right side of the equivalences, we adopt notation
from [48, §1].
By Lemma 7.4.1 and Proposition 7.4.2, the six operations on the left side in the above propo-

sition do have the correct range.

Proof. The isomorphisms for tensor product, internal Hom and f* simply follow from the same
definitions here and in [48, §4, §6]. The isomorphism for f, follows from the adjunction and that
for f* (Proposition 6.5.2). The isomorphism for f; will follows from the adjunction and that for
f' which will be proved below.

By the compatibility of dualizing complexes and the isomorphisms for internal Hom, we have
natural isomorphisms D% =~ Dy and D} ~ Dy (Definition 7.5.3). Therefore, by [48, Definition
9.1], to show the 1somorph15m for f', we only need to show that our functors satisfy

hf'* ~ DY o hf*® o D.
Note that for every K € D.(X, A), the biduality map ¢, (K): K — D5 (D% (K)) is an isomorphism
by [48, Theorem 7.3.1]. Thus, we have
hf*K =~ hf* (D% (D% (K)))

= hf"(hHom% (hHomi (K, Qx), Qx))

~ hRy (hf' (hHomy (hHomi (K, Qx), Qx)))

~ h”Ry (hHomy (hf* (hFom (K, Qx), f'Qx)))

~ hHomjj (hf**(hHom¥ (K, Qx), Qy))

= Dj (hf*(D%(K))).

The proposition is proved. ]
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Remark 7.7.2. In view of the above compatibility, we have proven all the expected properties
of the six operations, in particular the Base Change Theorem, in the adic case of Laszlo—Olsson
[48].

8. PERVERSE T-STRUCTURES

In this chapters, we study perverse t-structures for stacks. In §8.1, we define the notion of
perversity evaluations on stacks, to which we will associate t-structures. In §8.2, we construct
the perverse t-structure with respect to a perverse evaluation. In §8.3, we construct perverse
t-structures in the adic case.

8.1. Perversity evaluations. We first recall various notion of perversity functions on schemes,
introduced by Gabber.

Definition 8.1.1. Let X be a scheme in 8ch®*P. Denote by |X| the underlying topological
space of X.

(1) Following [23, §1], a weak perversity function on X is a function
p: | X| = ZU{+o00}

such that for every n € Z, the set {x € |X||p(z) > n} is ind-constructible.

(2) An admissible perversity function on X is a weak perversity function p such that for
every = € |X]|, there is an open dense subset U C @ satisfying the condition that for
every ' € U, p(z') < p(z) + 2 codim(z’, z).

(3) A codimension perversity function on X is a function p: | X| — Z U {400} such that for
every immediate étale specialization x’ of z, p(z’) = p(x) + 1.

Remark 8.1.2. We have the following remarks concerning perversity functions.

(1) A weak perversity function on a locally Noetherian scheme is locally bounded from below.

(2) An admissible perversity function on a scheme that is locally Noetherian and of finite
dimension is locally bounded from above.

(3) A codimension perversity function on a scheme is not necessarily a weak perversity
function.

(4) A codimension perversity function that is also a weak perversity function is an admissible
perversity function. If X is locally Noetherian, then a codimension perversity function
is a weak perversity function and hence an admissible perversity function.

(5) A codimension perversity function is the opposite of a dimension function in the sense
of [41, Exposé XIV, Définition 2.1.8]. If X is locally Noetherian and admits a dimension
function, then X is universally catenary by [41, Exposé XIV, Proposition 2.2.6]. In
this case, immediate étale specializations coincide with immediate Zariski specializations
[41, Exposé XIV, Proposition 2.1.4].

(6) If p is a weak (resp. admissible, resp. codimension) perversity function on X and d: | X| —
Z U {400} is a locally constant function, then p + d is a weak (resp. admissible, resp.
codimension) perversity function on X.

Definition 8.1.3. A function q: N — Z or q: Z — Z is called moderate if ¢ and 2 — ¢ are both
increasing. Here, 2 is the function 2(x) = 2z and similarly for 0 and 1, which will be used below.

Notation 8.1.4. Let f: Y — X be a morphism of schemes in Sch*°. For a function p: | X| —
Z U {+c0}, we define the pullback fgp: |Y| — Z U {+o0} by fip = po f. If f is locally
of finite type and ¢: N — Z is a function, we define more generally the g-weighted pullback
fop: [Y| = ZU{+oc0} by

(fap)(y) = p(f(y)) — q(tr.deg[k(y) : E(f(y))])
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for every point y € |Y].

In the following two lemmas we list some stability properties of weighted pullbacks of perversity
functions.

Lemma 8.1.5. Let f: Y — X be a morphism (resp. étale morphism, resp. étale morphism) of
schemes in 8ch°*°P. If p is a weak (resp. admissible, resp. codimension) perversity function on
X, then f§p is a weak (resp. admissible, resp. codimension) perversity function on'Y .

Proof. We have fgp =po f. If p is a weak perversity function, then

{y Y| for(y) = n} = [~ ({z € |X]| p(z) = n})

is ind-constructible by [31, Proposition 1.9.5(vi)]. The other two cases follow from the trivial
fact that codim(y’,y) = codim(f(y’), f(y)) for every specialization y’ of y on Y. O

Lemma 8.1.6. Let f: Y — X be a morphism of locally Noetherian schemes in 8ch9°*P locally
of finite type.
(1) Let p be a weak perversity function on X and q: N — Z an increasing function. Then
J4p is a weak perversity function on Y.
(2) Let p be an admissible perversity function on X an q: N — Z a moderate function
(Definition 8.1.8). Then f;p is an admissible perversity function on Y.
(8) Let p be a codimension perversity function on X. Then fip is a codimension perversity
function on'Y.

Proof. For a locally closed subset Z of a scheme X, we endow it with the reduced induced
subscheme structure. For every point y € |Y], let U, C {y} be a nonempty open subset such

that the induced morphism f,: {y} — {f(y)} is flat. Such an open subset exists by [31, Théoréme
6.9.1]. For y’ € U,, we have

0(y',y) = tr.deglk(y) : k(f(y))] — tr.deglk(y) : k(f(¥'))]
= codim(y’, Uy x505 {f(¥)}) 2 0

by [31, Proposition 14.3.13] since f, is universally open [31, Théoréme 2.4.6].
For (1), we know that for every n € Z,

{yelY|| fipl) =n} = |J ' {z € |X||p(z) > n+ q(tr.deglk(y) : k(f(»)))} N U,
yelY|

is a union of ind-constructible subsets, and hence is itself ind-constructible. In other words, fyp
is a weak perversity function.

For (2), let y € |V be a point; put z = f(y); and let U, C {z} be a dense open subset such
that p(z’) < p(x) + 2 codim(z’, x) for every 2’ € U,. We prove that for y' € U, N f~1(U,),

fap(y') < fyp(y) + 2codim(y’,y)
holds. We may assume p(x) € Z. Put 2’ = f(y’). We have
fap(y) = p(x) — q(tr.deg[k(y) : k(z)])
and
fap(y') = p(a’) — q(tr.deg[k(y’) : k(z")]).
Moreover, by [31, Corollaire 6.1.2], we have

5(y',y) = codim(y’,y) — codim(z’, z).
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Therefore, we have

far(y') = fip(y) = p(a') = p(x) + q(tr.deglk(y) : k(z)]) — q(tr.deg[k(y’) : k(z)])
< 2codim(2’, z) + 28(y, y) = 2 codim(y/, y)

since ¢ is moderate. In other words, fyp is an admissible perversity function on Y.
For (3), it is essentially proved in [41, Exposé XIV, Corollaire 2.5.2]. O

Now we generalize the notion of perversity functions from schemes to stacks, by starting from
the following definition.

Definition 8.1.7 (Pointed schematic neighborhood). Let X be a higher Artin (resp. Deligne-
Mumford) stack. A pointed smooth (resp. étale) schematic neighborhood of X is a triple
(X0, ug, xg) where up: Xo — X is a smooth (resp. an étale) morphism with Xy € Sch%"P
and zg € | Xo| a scheme-theoretical point. A morphism v: (X7, uq,21) = (Xo, uo, Zo) of pointed
smooth (resp. étale) schematic neighborhoods is a smooth (resp. an étale) morphism v: X; — X
such that there is a triangle

(8.1) X, — X,
NP

with v(x1) = 2. We say that (X1, u1,x1) dominates (Xo, uo, xo) if there is such a morphism. The
category of pointed smooth (resp. étale) schematic neighborhoods of X is denoted by Vo®™ (X)

(resp. Vot*(X)).

Lemma 8.1.8. Let X be a higher Artin stack, and let v: (X1,u1,21) = (Xo, uo, o) be a mor-
phism of pointed smooth schematic neighborhoods of X. Then the codimension of x1 in the base
change scheme X1 o, = X1 X x, {xo} depends only on the source and the target of v.

Proof. Note that codim(z1, X1 4,) = dim,, (v) — tr.deg[k(z1) : k(xo)]. It is clear that the term
dimg, (v) = dimg, (u;) — dimg, (up) does not depend on v. We will show that the other term
tr.deglk(z1) : k(xg)] does not depend on v either.

Let f: Y — X be an atlas of X with Y a scheme in 8ch“*°P. Let

Y, — Y,

\/

be the base change of (8.1), and fo: Yo — X, fi: Y1 — X the induced morphisms. Let
wp: Yy — Yo be an atlas with Y{ a scheme in 8ch%*?  and let

1"
v
v v

wll | iwo

Y ——=Yp

be the base change. Then v is a smooth morphism of schemes in Sch*°P. Since fyowy: Yy —
Xy is smooth and surjective, the base change scheme Yy, = Yj xx, {70} is nonempty and
smooth over the residue field k(xo) of zo. Similarly, we have a nonempty scheme Y7 , , smooth
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over k(z1). Choose a generic point y; of Y7, . Then its image y; in Yy, is a generic point. Let
y be the image of y in Y. Then we have

tr.deg(k(x1) : k(zo)] = tr.deg[k(y}) : k(y)] — tr.deg[k(yo) : k(y)]

which does not depend on v. The lemma follows. O

Notation 8.1.9. Let X be a higher Artin stack, and let v: (X1, u1,21) — (Xo,uo, o) be a

X1,u1,1) h
Xo,u0,%0) the

morphism of pointed smooth schematic neighborhoods of X. We will denote by 55
codimension appeared in Lemma 8.1.8. It is clear that

(X2,u2,22) :6(X2,u27962) + (X1,u1,21)
(Xo,u0,%0) (X1,u1,21) (Xo,u0,T0)

(X1,u1,21) _
(Xo,u0,%0)

if (X5, us,x2) dominates (X1, u1,21). Moreover, if v is étale, then we have § 0.

Notation 8.1.10. For a higher Artin (resp. Deligne-Mumford) stack X and a function
p: Ob(Vo'™ (X)) — Z U {+oc} (resp. p: Ob(Vo** (X)) — Z U {400}), we have, by restric-
tion, the function py,: |Xo| = Z U {400} for every smooth (resp. étale) morphism ug: Xg — X
with Xy in Sch9¢*°P,

If f: Y — X is a smooth (resp. an étale) morphism of higher Artin (resp. Deligne-Mumford)
stacks, then composition with f induces a functor f: Vo™ (Y) — Vo™ (X) (resp. f: Vo' (V) —
Voét(X)), and we put f*p=po f.

Definition 8.1.11 ((admissible/codimension) perversity evaluations). Let X be a higher Artin
stack. A smooth evaluation on X is a function

p: Ob(Vo*™ (X)) — Z U {+oc}
such that for (X, u1, ;) dominating (Xg, ug, o), we have

(X1,u1,21)

P(Xo, uo, w0) < p(X1,u1,21) < p(Xo, w0, Z0) + 20 %, o 2o}

A perversity smooth evaluation (resp. admissible perversity smooth evaluation, codimension
perversity smooth evaluation) on X is a smooth evaluation p such that for every (Xo,ug,xo) €
Ob(Vo™ (X)), pu, is a weak perversity function (resp. admissible perversity function, codimen-
sion perversity function) on Xj.

Similarly, we define étale evaluations and (admissible/codimension) perversity étale evalua-
tions on a higher Deligne-Mumford stack X using Vo (X).

We say that a smooth (resp. étale) evaluation p is locally bounded if for every smooth (resp.
étale) morphism ug: Xo — X with X, a quasi-compact separated scheme, p,,, is bounded.

Remark 8.1.12. If X is a scheme in 8ch9*P, then the map from the set of étale evaluations on
X to the set of functions |X| — Z U {400}, carrying p to piay, is bijective. Under this bijection,
the notions of (weak) perversity, admissible perversity, and codimension perversity coincide.

Ezample 8.1.13. We have the following examples of perversity smooth/étale evaluations.

(1) Let X be a higher Artin (resp. Deligne-Mumford) stack. Then every constant smooth
(resp. étale) evaluation is an admissible perversity smooth (resp. étale) evaluation.

(2) Let f: Y — X be a morphism of higher Deligne-Mumford stacks. Let p be an étale
evaluation on X. We define an étale evaluation fip on Y as follows. For any object
(Yo, vo, o) of Vo (Y), there exists a morphism (Y1, v1,1) — (Yo, vo, yo) in Vo (V') such
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that there exists a diagram

Y]_UH]Y

J )

Uo

Xy 105 X,
where X is in 8ch9“*°? and ug is étale. We put

fop(Yo, vo, yo) = p(Xo, o, fo(y1))-
This clearly does not depend on choices. If p is a perversity étale evaluation, then so is
fop by Lemma 8.1.5. If f is étale, then fgp = f*p.
If f is locally of finite type and ¢: N — Z is a function, we define more generally an
étale evaluation fyp onY by

fqP(Yo,v0,90) = p(Xo, w0, fo(y1)) — q(tr.deg[k(y1) : k(fo(y1))])-

In the case where X and Y are schemes, the above notation is compatible with Nota-
tion 8.1.4 via the bijection in Remark 8.1.12.

(3) Let f: Y — X be a morphism of higher Artin stacks with X being a higher Deligne—
Mumford stack. Let p be an étale evaluation on X, and ¢: Z — Z a moderate function
(Definition 8.1.3). Assume that f is locally of finite type in the case ¢ # 0. We define a
smooth evaluation fyp on Y by the formula

(f7P)(Yo,v0,90) = ((vo © f)3P)idy, (Y0)

for every object (Yp,vg,yo) of Vo™ (Y), where ¢': N — Z is the function ¢'(n) =
g(n — dimy, (vg)). If p is a perversity étale evaluation, then f§p is a perversity smooth
evaluation. If X is locally Noetherian, f is locally of finite type, and p is a perver-
sity (resp. admissible perversity, resp. codimension perversity) étale evaluation, then
fqp (resp. J4ps resp. f1 p) is a perversity (resp. admissible perversity, resp. codimension
perversity) smooth evaluation by Lemma 8.1.6.

8.2. Perverse t-structures. In this section, we define t-structures associated to perversity
evaluations.

Definition 8.2.1. Let C be a stable co-category equipped with a t-structure. We say that C is
weakly left complete (resp. weakly right complete) if €S™°° :== [ €S~ (resp. CZ> =) €>")
consists of zero objects.

The family (H?);cz is conservative if and only if € is both weakly left complete and weakly
right complete (cf. [6, Proposition 1.3.7]). The following lemma slightly extends [53, Proposition
1.2.1.19).

Lemma 8.2.2. Let C be a stable co-category equipped with a t-structure. Consider the following
conditions

(1) The oco-category C is left complete.
(2) The co-category C is weakly left complete.

Then (1) implies (2). Moreover, if C admits countable products and there exists an integer a
such that countable products of objects of CSC belong to CS%, then (2) implies (1).

Proof. The first assertion is obvious since the image of €S~ under the functor € — @ consists
of zero objects, where € is defined prior to [53, Proposition 1.2.1.17].

To show the second assertion, it suffices to replace f(n — 1) by f(n —a — 1) in the proof of
[53, Proposition 1.2.1.19]. O



ENHANCED SIX OPERATIONS AND BASE CHANGE THEOREM 175

Let X be a scheme in 8ch%*" let p: | X| — ZU{+o00} be a function, and let A = (2, A) be an
object of Rind. Following Gabber [23, §2], we define full subcategories PDSO(X, \),PD>0 (X, \) C
D(X, A) as follows: For K € D(X, \),

e K belongs to PDSY(X, \) if and only if
22K € DO (7, ))

for every z € | X]|.
e K belongs to ?D>°(X, \) if and only if K € D) (X, \) and

ibj2K € DZPO (T, \)
for every z € | X|.

Here T is a geometric point above x, and we have natural morphisms
ijlf—)X(E), Iz X(g) — X.
We will omit jZ from the notation when no confusion arises.

Lemma 8.2.3. If p is a weak perversity function, then (PDSO(X, \),PD>%(X, \)) is a t-structure
on D(X,\). Moreover,

(1) this t-structure is accessible;

(2) this t-structure is weakly left complete if p takes values in Z;

(3) this t-structure is right complete;

(4) this t-structure is left complete if p is locally bounded and every quasi-compact closed
open subscheme of X is A-cohomologically finite. Here, we say that a scheme Y is
A-cohomologically finite if there exists an integer n such that, for every £ € =, the A(£)-
cohomological dimension of the étale topos of Y is at most n.

Proof. The fact that (PDSO(X,\),?D>%(X,)\)) is a t-structure is a theorem of Gabber [23]
when = is a singleton. This generalizes easily to the case of general Z as follows. By
[53, Proposition 1.4.4.11], there exists a t-structure (PDSC(X,)),D’) on D(X,\). For K €
PPSO(X, ) and L € PDZ9(X,\), we have a.Hom(K,L[1]) € DZ1(x, \), hence Hom(K,L[1]) =
HY(Z, a.Hom(K,L[1])) = 0, where a: Xg& — * is the morphism of topoi. Thus, we have
pD>°(X, A) C D'. For every £ € E, the functor Leg: D(X,A(£)) — D(X,N) is left t-exact
for the t-structures (PDSO(X, A(€)),?DZ(X,A(¢))) and (PDSO(X, ), D’). Tt follows that ef is
right t-exact for the same t-structures. Thus, we have D’ C PD>%(X, \) as well.

For the properties, (1) and (2) follow from the definition directly; (3) follows from [23, Lemma
3.1]; and (4) follows from Lemma 8.2.2. O

Now we define t-structures for stacks associated to perversity evaluations. Let X be a O-
coprime higher Artin (resp. a higher Deligne-Mumford) stack equipped with a perversity smooth
(resp. étale) evaluation p (Definition 8.1.11), and let A be an object of Rind_¢o, (resp. Rind). For
an atlas (resp. étale atlas) u: Xo — X with Xj a scheme in 8ch®**P_ we denote by PDS (X, \) C
D(X,A) (resp. PDZ%(X,\) € D(X,\)) the full subcategory spanned by complexes K such that
u*K is in P*DSO( X, \) (resp. P*DZ0(Xy, N)).

Proposition 8.2.4. Let X be a O-coprime higher Artin (resp. a higher Deligne—Mumford) stack
equipped with a perversity smooth (resp. étale) evaluation p, and let A be an object of Rindg_ior
(resp. Rind ). Then

(1) The pair of subcategories (PDSO(X,\),PDZ(X, \)) do not depend on the choice of u.
We will denote them by (PDSO(X, ) PDZ0(X, \)).
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(2) The pair of subcategories (PDSO(X, \),PDZ0(X, \)) determine a right complete accessible
t-structure on D(X, ), which is weakly left complete if p takes values in Z. This t-
structure is left complete if p is locally bounded and if for every smooth (resp. étale)
morphism Xo — X with Xg a quasi-compact separated scheme, Xg is A-cohomologically
finite.

(8) If f: Y = X is a smooth (resp. étale) morphism, then f*: D(X,\) = D(Y,\) is t-exact
with respect to the t-structures associated to p and f*p.

Proof. There exists k > —2 such that X and Y are in Chp*™* (resp. Chpk'DM). We proceed
by induction on k. The case k = —2 follows from Lemma 8.2.3 and Lemma 8.2.5 below. The
induction step follows the same proof as in Lemma 4.3.8 and Lemma 4.3.9. g

Lemma 8.2.5. Let f: Y — X be a smooth morphism of schemes in Schi P, let X be an
object of Rindr_tor, and let p: | X| — Z U {+oo} be a function. Then f' carries PDZ0(X,\)
to f;pD>O(K A). Moreover, if p is a weak perversity function on X and q is a weak perversity
function on'Y satisfying fip < q¢ < fap+2dim f, then f*: D(X, ) — D(Y, ) is t-exact with
respect to the t-structures associated to p and q.

Proof. The first assertion follows from Lemma 8.2.6 below. The second assertion follows from
the first assertion and the Poincaré duality f' ~ f*(dim f). O

Lemma 8.2.6. Let f: Y — X be a smooth morphism in 8chy**, and X an object of Rindr_to,-
Let g be a geometric point of Y above y; put T = f(y) and x = f(y). Then there is an equivalence
of functors

ipof' = g" o ih(d): DX, ) = DF(F,N),
where g: § — T is the induced morphism and d = tr.deg[k(y) : k(z)].

Proof. Consider the diagram with Cartesian squares

where V is a regular integral subscheme of Yz such that the image of ¥ in V' is a generic point.
We have a sequence of equivalences of functors

i!yof! ~ i%ojI 0 o o f'~ z‘%ojI 0ix o ;JT}OZ'! zi%oj! oL)"g!Cfoi%oiI
which, by the Poincaré duality, is equivalent to

iro(froj) oib>iro(froj)* oir(d) = g* oir(d).
The lemma follows. O

Remark 8.2.7. We call the t-structure in Proposition 8.2.4 the perverse t-structure with respect

to p and denote by P7<% and Pr>° the corresponding truncation functors, respectively.
(1) For every (étale) atlas u: Xo — X with Xy a scheme in 8ch“*?  we have u* o P7S0 ~
Pu <0

(2) If p = 0, then we recover the usual t-structure. If X is a higher Deligne-Mumford stack
and p is a perversity smooth evaluation, then the t-structure associated to p coincides
with the t-structure associated to p | Vo®*(X). If X is in Sch9®°P  then the t-structure
associated to p coincides with the t-structure defined by Gabber (as in Lemma 8.2.3)
associated to the function piq,

ow and u* o P20 ~ Pur20 6 g
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(3) Let K be a complex in D(X, A). Then by definition,
e K belongs to PDS"(X, \) if and only if for every pointed smooth (resp. étale)
schematic neighborhood (Xg,ug,zo) of X and a geometric point Zg lying over xg,
we have iz-ugK € DSP(Xo,uo.@o)+n (77 A,
e K belongs to PD>"(X, \) if and only if K € DM)(X,\), and for every pointed
smooth (resp. étale) schematic neighborhood (Xo,up,z) of X and a geometric
point T lying over xg, we have z'!TOUSK € DZP(Xouo,zo)+n (75 \),

At the end of the section, we study the restriction of perverse t-structures constructed above
to various subcategories of constructible complexes. We fix a [J-coprime base scheme S that is a
disjoint union of excellent schemes, endowed with a global dimension function.

Proposition 8.2.8. Let A = (E,A) be an object of Rindg_quar- Let f: X — S be an object of
thf?tr/s equipped with an admissible perversity smooth evaluation p (Definition 8.1.11). Then

the truncation functors PTSC, P20 preserve the full subcategory DEELS(X, A). Moreover, if p is

locally bounded, then PTSY, P20 preserve DP. (X, \) for 7 = (+), (=) or empty.

cons

Proof. We reduce easily to the case of a scheme. In this case, the result is essentially [23, Theorem
8.2]. O

8.3. Adic perverse t-structures. For perverse t-structures in the adic formalism, we define
PDS™(X,N)a = PDS(X,A) ND(X,N)a, PDZM(X,N)a =PDS" (X, N

both as full subcategories of D(X,\),. Then the pair (P°DS?(X, \),,PDZ(X,\),) define a t-
structure, called the adic perverse t-structure with respect to p, on D(X, \),. Denote Pr$0 and
Pr20 the corresponding truncation functors respectively. We have the following results.

Lemma 8.3.1. Let X be a O-coprime higher Artin stack (resp. a higher Deligne—Mumford stack)
equipped with a perversity smooth (resp. étale) evaluation p, and A an object of Rindg o, (Tesp.
Rind). Let K € D(X, N), be an (adic) complex. Let u: Xo — X be an atlas (resp. étale atlas)
with Xo a scheme in 8ch*P. Then K belongs to PDS™(X, \)a (resp. PDZ"(X, \).) if and only
if u*aK belongs to P*DS"(Xo, N)a (resp. P*DZ"(Xo, A)a)-

Proof. We only need to show that u** is t-exact. By definition, we obviously have
u**PDS?(X,\), C P*DS"(Xg,\).. For the other direction, assume K € PD>7(X,)\),,
that is, Hom(L, K) = 0 for every L € D(X, \), NPDS"(X, \). By the Poincaré duality, it suffices
to show that for every L’ € D(Xg,\)a NPeDSP=2dimu( X5 7)) we have Hom(L',u'*K) = 0, or
equivalently, Hom(uj,L’, K) = 0. This follows from the fact that u preserves adic complexes and
we have wL’ € PDS™(X, \). O

Proposition 8.3.2. Let X be a O-coprime higher Artin stack (resp. a higher Deligne—Mumford
stack) equipped with a perversity smooth (resp. étale) evaluation p, and A an object of Rindg o,
(resp. Rind). Let K € D(X, A), be an (adic) complex.

(1) Then K belongs to PDS"(X, \). if and only if for every pointed smooth (resp. étale)
schematic neighborhood (Xo,uo,zo) of X and a geometric point Tg lying over xzg, we
have iZ2us*K € DSPXo-to.wo)n (75 X)), |

(2) Assume that p is locally bounded. Then K belongs to PD>"(X,\), if and only if
K € DX, N)a, and for every pointed smooth (resp. étale) schematic neighbor-
hood (Xo,ug,x0) of X and a geometric point Tg lying over xg, we have i%ugaK €
'DEP(XOMD,Z‘O)-HL(TO’ Na-
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Proof. Part (1) is a consequence of the definition and Remark 8.2.7(3).

For (2), by Lemma 8.3.1, we may assume that X € 8ch%*? is quasi-compact and p = p
is a bounded weak perversity function. Then K € PD>"(X, \), is equivalent to that for every
L € PD<"(X, \)a, Hom(L,K) € D>Y(X, \), which is then equivalent to Hom(L,K) € DT (X, \)
and iLHom(L,K) € D>O(z, \) for every geometric point T of X. By Proposition 7.2.7(4), we
have isomorphisms

it Hom(L, K) =~ Hom(itL, itK) ~ FHom(iZ*L,i2K).

Now we may assume a < p < 3 for some «, € Z since p is bounded. Then PD<"(X \),
containg D<FT( X )\),.

Now for K € PD?"(X,\),, we have K € DZ*"(X )\), C DV (X,\). and
Z%K € D=P@)+n (g \), for every geometric point Z of X lying over .

Conversely, assume K € DT (X, \),, say in DZ7(X, \),, and i2K € D=rE@)+n(Z, \), for every
geometric point Z of X lying over z. We have Hom(L,K) € D>7=#="(X \) C DF(X,)) and
Hom(iz*L,i2K) € D>O(F, ). Thus, we have K € PD>"(X, \),. O

Remark 8.3.3. Let p, q be two perversity smooth (resp. étale) evaluations on a O-coprime higher
Artin stack (resp. a higher Deligne-Mumford stack) X. Let A be an object of Rindg.¢o, (resp.
Rind). Let the subscript ? be either “a” or empty.

(1) The intersection of the pair of subcategories (PDSY(X,\)7,PD>0(X,\);) with
D) (X, A)7 induces a t-structure on the latter stable co-category.

(2) If p < q, then
(a) pT<0 preserves DS (X \);

(b) qr, preserves PDZ0( X, \)7;

(c) "T«, is equivalent to the identity functor when restricted to YD=0(X, \)s;
(d) 9750 is equivalent to the identity functor when restricted to PDSO(X, A)s;
(e) PT«, is equivalent to the null functor when restricted to YDZ0(X, \)s;
(f) 9770 is equivalent to the null functor when restricted to PD<O(X, \),.

(3) By (2a), if p is locally bounded, then the intersection of the pair of subcategories
(PDSO(X, N)7,PD>9(X, \)7) with D()(X,A); or DP)(X, )7 induces a t-structure on
the latter stable oco-category.

(4) By (2e) and (2f), if X is quasi-compact and p is bounded, then there exist constant
integers o < 3 such that PHY = PHY o 77[ of] , where PHY = PT>O o PT?@ is the cohomology
functor.

9. HYPERDESCENT PROPERTIES

In this chapter, we study hyperdescent properties for certain operations on stacks. In §9.1,
we study some general facts for hyperdescent. In §9.2, §9.3 and §9.4, we study smooth, proper
and flat hyperdescent, respectively.

9.1. Hyperdescent. In this section, we study hyperdescent properties in the general setup.

Definition 9.1.1. Let C, D be oo-categories, let F': C°? — D be a functor, and let
X : N(A;)°? — € be an augmented simplicial object of €.
(1) We say that X is an augmentation of F-descent if F o (X})P is a limit diagram in D.
(2) Assume that € admits pullbacks. We say that X is a hypercovering for universal F-
descent if Xf — (cosky—1(XJS/XT))), is a morphism of universal F-descent for all
q=0.
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By definition, a morphism of € is of F-descent (Definition 3.3.1) if and only if its Cech nerve
is an augmentation of F-descent. We now give several criteria for (2) = (1).

Proposition 9.1.2. Let C be an co-category admitting pullbacks, let D be an n-category admit-
ting finite limits for an integer n > 0, and let F': C°P — D be a functor. Then every hypercovering
X for universal F-descent is an augmentation of F-descent.

To prove Proposition 9.1.2, we need a few lemmas.

Lemma 9.1.3. Let C, D be co-categories such that C admits finite limits, let F': C°P — D be a
functor, and let e be a final object of C. Let fo: Us — Vo be a morphism of simplicial objects of
C such that Vo — e is an augmentation of F'-descent and f, is a morphism of F'-descent for all
q. Assume that there exists an integer n = 0 such that U, is n-coskeletal, Vy is (n— 1)-coskeletal,
and f, is an equivalence for ¢ < n. Then Uy — e is an augmentation of F-descent.

Proof. With out lost of generality, we may assume that F'(e) is an initial object of D. Let
Wi:N(Ay x A)°P — Fun(Al, @) be a Cech nerve of f,, and put W := W, | N(A x A)°P. For
every ¢ > 0, Wy | N(A, x {[g]})°? is a Cech nerve of f,, which is a morphism of F-descent by
assumption. It follows that F o W | N(A4 x {[¢]}) is a limit diagram. Thus, we may identify
the limit of F'o W°P with the limit F'o W | N({[—1]} x Aj). Since W, [ N({[-1]} x A)°P can
be identified with Vj, the limit of F' o W°P can be identified with F'(e). Put Dy := W o §, where
0: N(A)? — N(A x A)°P is the diagonal map. Since N(A)°? is sifted [52, Lemma 5.5.8.4],
the limit of F o D¢ can be identified with F(e). The proof of [52, Lemma 6.5.3.9] exhibits
Us IN(A4)°P as a retract of De | N(A)°P. Tt follows that the limit of F'oUg? is a retract of F(e),
hence is F(e). The lemma follows. O

Lemma 9.1.4. Let C, D be co-categories such that C admits pullbacks, let F: CP — D be
a functor, and let X} be an n-coskeletal hypercovering for universal F-descent for an integer
n > —1. Then X} is an augmentation of F-descent.

Proof. Since morphisms of universal F-descent are stable under pullbacks and compositions, the
morphism cosk,, (XS /X)) — cosk,, 1 (X /X)) satisfies the assumptions of Lemma 9.1.3. It
follows by induction that cosk, (X} /X)) is an augmentation of F-descent. O

Lemma 9.1.5. Let n > —1 be an integer, let D be an n-category admitting finite colimits,
and let fo: Yy — Xo be a morphism of semisimplicial (resp. simplicial) objects of D such that
Y, = X4 is an equivalence for ¢ < n. Then the induced morphism between geometric realizations
|fol: |Ye| = | Xe| s an equivalence in D.

Proof. The existence of the geometric realizations is guaranteed by [53, Lemma 1.3.3.10]. The
semisimplicial case follows from the simplicial case by taking left Kan extensions. The simplicial
case follows from the proof of [53, Lemma 1.3.3.10]. O

Proof of Proposition 9.1.2. It suffices to apply the dual version of Lemma 9.1.5 to the morphism
h: X} — cosk, (XF/XT)) and Lemma 9.1.4. O

The following proposition can be used to deduce Gabber’s hyper base change theorem [41,
Exposé XIII, Théoréme 2.2.5] (see [41, Exposé XII, Remark 2.3]).

Proposition 9.1.6. Let C be an co-category admitting pullbacks, let D be a stable co-category
endowed with a weakly right complete t-structure that either admits countable limits or is right
complete, let F: CP — D be a functor, and let XS : N(A, )P — C be a hypercovering for
universal F-descent such that F o (X})°P factorizes through DZ°. Then X} is an augmentation
of F-descent.
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Proof. Let n > 0. By Lemma 9.1.4, ;5 = cosk, (X} /X)) is an augmentation of F-descent, so
that it suffices to show that the morphism

c: K = lim F(X,) = L= Jim F(Y,)
PEA pEA
induced by he: X} — Y, is an isomorphism. By [53, Remark 1.2.4.4, Proposition 1.2.4.5], we
have a morphism of converging spectral sequences

EPY = HIF(X,) == HPHIK

c‘l”ql alJrqc

'EP = HIF(Y,) = HPHIL,

concentrated in the first quadrant. For p < n, since h,, is an equivalence, ¢{*? is an isomorphism
for all q. Tt follows that c?? is an isomorphism for p + ¢ < n — 1, and 75" L¢ is an equivalence.
Since n is arbitrary and D is weakly right complete, ¢ is an equivalence. O

We denote by ?rlﬁt’t (resp. Tri’t) the oco-category defined as follows:

e Objects of Tri‘tyt (resp. iPrSRtyt) are presentable stable oco-categories equipped with a t-
structure.

e Morphisms of fPrlﬁt)t (resp. Triﬂ are t-exact functors admitting right (resp. left) adjoints.

The oo-categories fPlr;Jt’t (resp. Tr?t’t) admit small limits, and those limits are preserved by the

forgetful functor Prly , — Prl (vesp. Prlt, — Prll). For a diagram K — Prli or K — P,

(@1 Cr)SO (resp. (@ Cx)Z") is the full subcategory of @@k spanned by objects whose image

in G is in (:’,fo (resp. Gfo). For an interval I C Z, we have an equivalence (1&1 Cr)€l — lim eel.

We denote by Prf; ;.. (resp. Trit’rc,wlc) the full subcategory of Prf; ; (resp. Prf ) spanned

by those € that are weakly right complete (resp. right complete and weakly left complete). This
full subcategory is stable under small limits in Prl; ; (resp. Prf ).

Proposition 9.1.7. Consider a diagram

F
lop R
D Trst,t,rc,wlc

AT

Dep ¢ Catoso

of co-categories, in which D admits pullbacks, j is an inclusion satisfying the right lifting property
with respect to OA™ C A™ forn > 2, and P is the forgetful functor. Assume that the arrows in D’
are stable under pullbacks in D by arrows in D’. Let X} : N(A )P — D be a hypercovering for
universal G-descent such that X |N(A41)°P factorizes through j. Then X} is an augmentation
of G-descent.

Proof. By the right completeness of F(X,") for p > —1, it suffices to show that (F o (XJ) |
N(A,4))S0 is a limit diagram. Put € = @(F o (XJF)°P | N(Ay)) for simplicity. We then have
the induced t-exact functor f*: F(XT,) — €. Let fi: € — F(XT,) be a left adjoint of f*. The
restrictions of these provide adjoint functors

()50 €0 o F(X*)S0, (£)<0: F(XH)<0 - €=,

Let us first show that a: fif*K — K is an equivalence for all K € F(X1,)S namely, that
(f*)SY is fully faithful. This is similar to Proposition 9.1.6. Take m > 0. The morphism
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he: XJ& — cosk, (X /X™)) =Y, induces a diagram

A K —————>99"K

A

where g is a left adjoint of the t-exact functor g*: F(X*,) — Hm F o (Y,;5)oP | N(Ag). By
Lemma 9.1.4, Y& is an augmentation of G-descent, so that b is an equivalence. Moreover, we
have ¢ = hm(fp [y K = gpgy K), where fp is a left adjoint of f; F(X*t) — F(X,5), gpr is a left
adjoint of gy (Yj) — F(Y,5), and fpfy — gpg, is induced by hy. By [53, Remark 1.2.4.4,
Proposition 1.2.4.5], we have a morphism of converging spectral sequences

P = HO(f_puf*,K) == HPH9f f*K

Czl%ql alJrqc

/Exlhq = H¢ (g—p!g*_pK) _— Hp+qug*K,

concentrated in the third quadrant. For p > —n, since h,, is an equivalence, ¢}"? is an isomorphism
for all ¢. It follows that c29 is an isomorphism for p +¢ > 1 —n, and 721~ "¢ is an equivalence.
Therefore, 7217"a is an equivalence. Since n is arbitrary and F(X fl) is weakly left complete, a
is an equivalence.

It remains to show that d: L — f*fL is an equivalence for every L € €<%, Since € is weakly
left complete, it suffices to show that 72!7"d is an equivalence for every n > 1. For this, we
may assume L € Cl'=01 We will show that L is in the essential image of (f*)<°. Since (f*)<°
is fully faithful, this proves that d is an equivalence. Let H: Prf — Cat,, be the functor

st,t,rc,wlc
sending F to FI=9 where Cat, is the oo-category of n-categories. It suffices to show that
HoFo(X[S)? | N(Asy) is a limit diagram. Since Cat,, is an (n + 1)-category, we may assume
that X}/ X, is (n+ 1)-coskeletal by Lemma 9.1.5 applied to X — cosk, 1 (X /X™,). In this
case, F o (X)? |N(Asy) is a limit diagram by Lemma 9.1.4. O

The following variant of Proposition 9.1.7 will be used to establish proper hyperdescent. To
state it conveniently, we introduce a bit of terminology. Let € be an oo-category admitting
pullbacks, and F': C°? — Cats, a functor. We say that a morphism f of C is F'-conservative if
F(f) is conservative. We say that f is universally F-conservative if every pullback of f in €
is F-conservative. We say that an augmented simplicial object X of C is a hypercovering for
universal F-conservativeness if X&' — (cosk,_1(XJ /X)), is universally F-conservative for
every n = 0.

Proposition 9.1.8. Let C be an oo-category admitting pullbacks, let F': P — Prl be a

functor, and let a be an integer.
(1) Let G: f]’rl#mt’wrc — Catyo be the functor sending C to @>%. If X} is a hypercovering for
universal (G o F)-descent, then it is an augmentation of (G o F)-descent.
(2) Let G: Prli ype — Catoo be the functor sending C to €1 =], ™. If X is a hyper-
covering for universal (G o F')-descent and for universal (P o F')-conservativeness, where
P: fPrgt’t,wrC — Cateo is the forgetful functor, then it is an augmentation of (G o F)-
descent.

st,t,wrc

Proof. The proof for (1) is similar to the proof of Proposition 9.1.7. For (2), the conservativeness
implies that G(lim F o (XJ)or) — imGo Fo (XJF)°P is an equivalence. The rest of the proof is
similar. O
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9.2. Smooth hyperdescent. The étale oo-topos of an affine scheme is not hypercomplete (see
[52, §6.5.2] for the definition) in general. By contrast, the stable co-categories we constructed
satisfy smooth hyperdescent.

We regard the map

enprr EO? = (g a EON®: N(Chp™T) x N(Rind)” — CAlg(Catee) by gr,c1

and the map
enpar B0 N(ChpA) p x N(Rindp.or )P — Prl
from §5.4 as functors
enpr EO® : N(Chp™")?? — Fun(N(Rind)*, CAlg(Catoo )y st.c1)»
enpar B0y N(Chp2F)r — Fun(N(Rindrio, )P, Prl).
In the adic case, we have similar functors
enpt EO® : N(Chp™")?? — Fun(N(Rind), CAlg(Catoo )y st.c1)»
ehpe?EOI : N(Chpér)p — Fun(N(Rindq 4o, )7, Prk).
from Proposition 7.2.1 and (7.6), respectively.

Definition 9.2.1. We say that an augmented simplicial object X in Chp*" (or similar co-
categories) is a (P) hypercovering for a property (P) on morphisms if X, — (coskq_1 (X /X)),
is surjective and satisfies (P) for every ¢ > 0.

Proposition 9.2.2. Every smooth hypercovering in Chp™ (resp. Chpa') is an augmentation
of both ehpArEO®-descemf (resp. ehpAD,EO!O”-descemf) and EO®-descent (resp. ehpAD?EOIOP_

descent).

a
ChpAT

Proof. Let X be an augmented simplicial object of Chp™® (resp. thér). It suffices to apply
Proposition 9.1.7 to the full subcategory Chp?nr] /x_, © th‘?)r{_ . spanned by higher Artin stacks
smooth over X_;. In the notation of Proposition 9.1.7, F associates the usual t-structure (resp.
the usual t-structure shifted by twice the relative dimension over X_1). This proof applies to
both the non-adic case and the adic case. The adic case can also be deduced from the non-adic
case by taking limits. O

9.3. Proper hyperdescent. In this section, we study hyperdescent properties for proper mor-
phisms. We start from some lemmas for preparation.

Lemma 9.3.1. Let C and D be stable co-categories equipped with left complete t-structures.
Let F: € — D be a t-exact functor. Then CSP admits geometric realizations, and geometric
realizations are preserved by F'.

Proof. By [53, Proposition 1.2.4.5], for any simplicial object Xo of €, there exist a geometric
realization X = |X,| in € and a geometric realization ¥ = |FX,| in D, and H"(f) is an
isomorphism for all n, where f is the morphism Y — FX. It follows that f is an equivalence. [

Lemma 9.3.2. Let C, D, & be stable oo-categories equipped with t-structures such that C and
D are both left and right complete. Let F': C — D and G: C — & be t-exact functors. Assume
G conservative. Then € admits G-split [53, Definition 4.7.2.2] geometric realizations, and those
geometric realizations are preserved by F'.
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Proof. Let X, be a G-split simplicial object of €, and Y,: N(A ) — D a split augmentation
of G o X,. Then the unnormalized cochain complex

.- — H%Y — HY; - HY, - HY_ ;1 =0
is acyclic. Since G is conservative, it follows that the unnormalized cochain complex
S HIX, - HOX, 2 HOX,

is an acyclic resolution of the object A9 = coker(#7) in the heart of C and the same holds after
applying the functor F. By [53, Corollary 1.2.4.12], X, admits a geometric realization X, F' X,
admits a geometric realization Z, and H"(f) is an isomorphism for all n, where f is the morphism
Z — FX. It follows that f is an equivalence. O

The functor ehpArEO® restricts to a functor

o pi?Eo* : N(Chpf")?? — Fun(N(Rind_o, )P, Catog)
PO

sending X to the assignment A — DZ0(X, \).

Proposition 9.3.3. Let S be a O-coprime (resp. O-coprime locally Noetherian, that is, there
exists an atlas S — S where S is a locally Noetherian scheme) higher Artin stack.

(1) For every object A of Rindg_to, and every Cartesian square

w—2s7

f
Y —X

n thér (resp. thf?tr/g) with p proper of finite diagonal (resp. proper and 1-Artin), the
induced square

is right adjointable.
(2) Every proper finite-diagonal hypercovering in thér (resp. proper and 1-Artin hypercov-
ering in @hpf}tr/g) is an augmentation of ehlja?EO*—descent.
Proof. Let us first show that (1) implies (2). By Proposition 9.1.8, to show (2), it suffices to
show that every surjective morphism proper of finite diagonal (resp. proper and 1-Artin) is of
eh;%?EO*—descent. For this, we apply [53, Corollary 4.7.5.3]: Assumption (1) follows from the
dual of Lemma 9.3.1; Assumption (2) is simply part (1); and the conservativeness is clear.

To show (1), applying Proposition 4.3.6 and the smooth base change, we are reduced to the
case where X and Y are in 8ch*P. In this case, there exists a finite [63, Theorem B] (resp.
proper [56, Theorem 1.1]) surjective morphism r¢: Zy — Z with Zp a scheme. Since (1) is
ehp%?EO*—descent by the above proof of
(2). Thus, every object of D=%(Z, \) has the form Wm . rear K, where rq s a Cech nerve of
ro. By Lemma 9.3.1, the functors f* and g* preserve limits indexed by A. Thus, it suffices to
check that the natural transformation f* op, or,. — @« 0 g* o 1y, is a natural equivalence. This
follows from the known cases of (1) with p replaced by the proper 0-Artin morphisms r, and
PoOTy. O

known in the case where p is proper and 0-Artin, r¢ is
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The above result can be extended to D(X, \)® under cohomological finiteness conditions. We
fix an object A of Rind_,,- The functors ethArEO® and ehpA?EO(@ restrict to functors

EOS: N(Chpf¥)?P — CAlg(Caty)Y

Chpd’ prst.cl
ehr%?EO%: N(thgr)w - CAlg(eatoo)Iﬁr,st,cl

sending X to D(X,\)® and D(X, \)¥?, respectively.
Proposition 9.3.4. Let S be a O-coprime (resp. O-coprime locally Noetherian) higher Artin
stack. Let \ be an object of Rindr_ior-

(1) Consider a Cartesian square

Y.z

qi iz)
f
Y — X

n thé,r (resp. Chpf?tr/g) with p proper of finite diagonal (resp. proper and 1-Artin).
Assume that for every morphism U — X locally of finite type with U an affine scheme,
Xo is A-cohomologically finite. Then the induced square

D(Z,\) <— D(X, \)

g*l lf*

D(W, \) <L— DY, \)

is right adjointable.

(2) Let X} be a proper finite-diagonal hypercovering in thér (resp. proper and 1-Artin hy-
percovering in (?hpf?tr/g). Assume that for every morphism U — X1, locally of finite type
with U an affine scheme, Xy is A-cohomologically finite. Then XF is an augmentation

of both ehpADl-EO%—descent and ehpg?EO%-descent.

Proof. We first show that (1) implies (2) for ehphr

the proof of Proposition 9.3.3 with Proposition 9.1.8 replaced by Proposition 9.1.7 and Lemma

9.3.1 replaced by Lemma 9.3.2. Note that the case for EOf\@—descent implies the case for

ehpAE?EO%—descent by Lemma 3.3.4.

The proof for (1) is similar to Proposition 9.3.3 since g is of ehpErEO‘@—descent as well. [

EO%—deseent. One only needs to repeat

@hp‘ér

9.4. Flat hyperdescent. The following proposition is an analogue of flat cohomological descent
[3, Exposé vbis, Proposition 4.3.3(c)].

Proposition 9.4.1. Every flat and locally finitely presented hypercovering of higher Artin stacks
s an augmentation of ehpﬁ?EO*-descent.
)

Proof. By Proposition 9.1.8, we are reduced to show that every surjective flat and locally finitely
presented morphism f:Y — X in thér is of ehpZ?EO*—descent. By Lemma 3.3.2 and the
smooth descent, we are reduced to the case of schemes. Let X’ be a disjoint union of strict
localizations of X, such that the morphism is surjective. By [31, Corollaire 17.16.2, Théoréme
18.5.11], there exists a surjective étale morphism of schemes g: X’ — X and a finite surjective
morphism of schemes ¢': Z — X’ in 8ch9**? such that the composite morphism Z — X
factorizes through f. By Lemma 3.3.2 and étale descent, it suffices to show that ¢’ is of universal
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Schqc.igEO*—descent. For this, we apply [53, Corollary 4.7.5.3]: Assumption (1) follows from the
dual of Lemma 9.3.1; Assumption (2) follows from finite base change; and the conservativeness
is clear. 0

The above proposition can be extended to D(X, A)® under cohomological finiteness conditions,
similar to the case of proper hyperdescent. We leave details to the reader.

Remark 9.4.2. We define the oo-category of oco-DM stacks Chp™PM to be the oo-category
Sch(Get(Z)) of Get(Z)-schemes in the sense of [54, Definition 2.3.9, Remark 2.6.11]. Using Propo-
sition 9.1.7, we can adapt the DESCENT program in Chapter 4 to define the first and the second
enhanced operation maps for co-DM stacks, namely, a functor

enpee-om EOT: ((€hp™PM)?P 5 N(Rind) %)™ — Catog
that is a lax Cartesian structure, and a map

enpe-om EO™: 85 103 ((Ehp™PM)P x N(Rindyor) 7)™ P )5 — Catoo.

Applying the construction in §7.1, we obtain the first and the second enhanced adic operation
maps for co-DM stacks, namely, a functor

enp=-oM EOT: ((Chp™PM)? 5 N(Rind) )™ — Catog

that is a lax Cartesian structure, and a map

enp=-oMEO™ 2 05 (23 ((€hp™ M) 5 N(Rindyor ) )™ ) E5i) — Catio.
By restriction, we have similar functors o ~ovEO, and ehpm,m&EO!. Parallel to Propo-

sition 9.2.2, we have that every smooth hypercovering in thOO'DM is an augmentation

of both o w«ouEO®-descent (resp. o ~-ouEO"-descent) and o w-oifEO®-descent (resp.
ehpoo.m?EO!Op -descent). We have similar results for proper and flat hyperdescent.
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