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It is a great pleasure to be here, albeit virtually, to honor Luc
Illusie, whom I have known and admired for the past half
century.
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This is a a report on joint work with Pham Huu Tiep and
Antonio Rojas Léon.
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Abhyankar’s insight

For C/C a compact Riemann surface of genus g and S ⊂ C a
finite set of points, we have known for at least 90 years that its
fundamental group π1(C \ S) is a free group on 2g +#S − 1
generators. Hence the finite quotient groups G of π1(C \ S) are
those finite groups generatable by 2g +#S − 1 elements.
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Now consider the same situation with C replaced by an
algebraically closed field of characteristic p > 0.

For a finite group G, denote by Gp CG the normal subgroup
generated by its p-Sylow subgroups.

Abhyankar had the insight that the finite groups G which were
quotients of π1(C \ S) should be precisely those such that
G/Gp was generatable by 2g +#S − 1 elements.

In particular, for A1, precisely those G’s with G = Gp, and for
Gm those G with G/Gp cyclic.

This was proven by Raynaud for A1 and extended to the
general case by Harbater and also by Pop.
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Suppose we are given a finite group G which can occur in
characteristic p on C \ S, together with a faithful (complex)
representation ρ of G.

Because G is finite, there is always some number field K such
that the image of ρ lands in GLn(K ). If we now choose a prime
number ` and an embedding of K into Q`, we can view ρ as a
representation ρ : G→ GLn(Q`).
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Since G is a quotient of C \ S, we can compose

π1(C \ S)� G→ GLn(Q`),

to get a continuous `-adic representation of π1(C \ S), i.e., an
`-adic local system of rank n on C \ S, whose image is the finite
group G.

In the paragraph above, ` could have been any prime. But in
order to apply the rich theory of `-adic cohomology, we will
always choose ` 6= p, and our local systems will be `-adic ones.
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Working backwards, in three steps, from local systems to
groups
In practice, our C \ S comes from a C0 \ S0 over a finite
extension field Fq of Fp, and we look at a geometrically
irreducible local system H0 on C0 \ S0 which is pure of some
weight w ≥ 0. We will know (in the sense of “have a formula
for") the trace function of H0: for each finite extension E/k , and
each point x ∈ (C0 \ S0)(E), we will know Trace(Frobx ,E |H0). In
all cases we consider below, this trace will lie in the cyclotomic
integer ring Z[ζp, ζq−1].

Then det(H0) is geometrically of finite order, so by an α−deg

twist we may reduce to the case when det(H0 ⊗ α−deg) is
arithmetically of finite order. In favorable cases, we can take
α =
√

qw ; then the Tate-twisted H0(w/2) is both pure of weight
zero and has determinant of arithmetically finite order.
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Suppose we are in this favorable case where we can take
α =
√

qw .

We have both Ggeom, the Zariski closure in the ambient GLn of
the image of (the geometric monodromy of) H0(w/2), and the
larger group Garith, the Zariski closure for the arithmetic
monodromy of H0(w/2).

By Grothendieck’s global version of his local monodromy
theorem, Ggeom is a semisimple algebraic group over Q`. In
general we have Ggeom CGarith. It is easy to see that Ggeom is
finite if and only if Garith is finite.

9



By purity, one further knows that Garith is finite if and only if for
every finite extension E/Fq, and every point x ∈ (C0 \ S0)(E),
the Frobenius trace Trace(Frobx ,E |H0(w/2)) is an algebraic
integer.

This trace is, by definition of the Tate-twist,

(1/
√
#E

w
)Trace(Frobx ,E |H0).
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Its only possible nonintegrality comes from the division of a
cyclotomic integer by a power of

√
q. Concretely, then, the

criterion for finitenes of Garith is that for each p-adic ordp on the
field Q(ζp, ζq−1), each finite extension E/Fq, and every point
x ∈ (C0 \ S0)(E), we have

ordp(Trace(Frobx ,E |H0)) ≥ ordp(
√

#E
w
).
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Step 1: find “interesting" local systems H0 as inputs.

Step 2: for each, either prove Garith is finite, or prove that it is
not finite.

Step 3: if Garith is finite, determine Ggeom and Garith. If Garith is
not finite, determine Ggeom and Garith.
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Three examples of interesting irreducible local systems on
open curves over Fq

Ambient setting: ψ and χ:

ψ is a nontrivial additive character of Fp (viewed as having
values in Q`); leads to Artin-Schreier sheaf Lψ on A1/Fp. Trace
at points of k/Fp by composition with Tracek/Fp .

χ is a (possibly trivial) character of F×q (viewed as having values
in Q`); leads to Kummer sheaf Lχ on Gm/Fq. Trace at points of
k× for k/Fq by composition with Normk/Fq .
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Example 1. On Gm/Fq, we have the hypergeometric sheaves

H(χ1, ..., χn; ρ1, ..., ρm)

with n > m ≥ 0, each χi and each ρj is a (possibly trivial)
character of F×q , and no χi is any ρj . We know that if Ggeom is
finite, then we can take α =

√
qw . [But this need not be true for

a hypergeometric whose Ggeom is infinite.]
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Example 2. On A1/Fq, we have the local systems whose trace
functions are

t 7→ −
∑

x

ψ(f (x) + tx)χ(x),

with f (x) ∈ F[x ] a polynomial of prime to p degree n ≥ 2 and χ
either the trivial or, if p is odd, the quadratic character of F×q .
We can take α =

√
q. [This can be false for other χ, already in

the “baby case" when f (x) = x2.]
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Example 3. On a hyperelliptic curve U := C \ {∞} with
equation y2 = f2g+1(x), in odd characteristic p, we have the
local systems whose trace functions are

t 7→ −
∑

(x ,y)∈U

ψ(yg(x) + tx)χ(x),

with both f2g+1 and g in Fq[x ] of degree ≤ n and χ either the
trivial or the quadratic character of F×q , and with the proviso that
2g + 1 + 2 deg(g), the order of pole at∞ of yg(x), is prime to
p. We can take α =

√
q. [This can be false for other χ, already

in the “baby case" when g(x) = 1 and f (x) = x .]
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An open problem in Step 2

In each of the three examples, the local system is pure of
weight one; this is Weil’s theorem for curves, and after
replacing H0 by H0(1/2) we have finite Ggeom if and only if
H0(1/2) has all its Frobenius traces algebraic integers (which
we have seen is equivalent to all these traces being p integral
for all p-adic places). The question is how long we have to wait,
i.e., how many traces we need to compute, to decide if in fact
all Frobenius traces are p-integral.
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Consider any of the three example collections of local systems,
over a fixed Fq and with a fixed auxiliary integer n. Here is a
mock theorem:

mock Theorem, correct but useless per se
There exists a constant N = N(q,n) such that in each of these
collections of local systems, if all Frobenius traces on a given
H0(1/2) are algebraic integers at all points in all extensions of
degree ≤ N, then this H0(1/2) has all traces algebraic integers.

proof There are only finitely many local systems in question.
For each of the finitely many with infinite Ggeom, record the
degree of an extension field over which some Frobenius has a
non-integer trace. The the sup of these extension degrees
works as the required N = N(q,n).
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The question is the extent to which N(q,n) can be explicitly
bounded as a function of the input data (q,n). With a triply
exponential bound? With a bound which is polynomial in
n log(q), the number of bits in the input data?
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What we know and don’t know in Step 3

the hypereometric case In joint work with Pham Huu Tiep and
Antonio Rojas Léon, we have determined which of the 26
sporadic groups can possibly occur as Ggeom for a
hypergeometric sheaf, and exhibited for each of these groups a
hypergeometric that realizes it .

With Pham Huu Tiep, we have done the same thing for finite
groups of Lie type: analyzed which can possibly be realized by
hypergeometric sheaves, and realized each.
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the A1 case The general situation on A1 is less clear. When
the polynomial f (x) in ψ(f (x) + tx)χ(x) is the single monomial
xA with A > 1 and prime to p, with Pham Huu Tiep we have
complete understanding.[ But as soon as we allow more
general f (x), we know almost nothing.] For the local systems

t 7→ −
∑

x

ψ(xA + tx)χ(x),

here is the complete story.

Although the statements won’t mention hypergeometric
sheaves, their proofs depend completely on that theory.
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If Ggeom is finite, there are two sporadic cases:

p = 5,A = 7, χ = 1, and Ggeom is 2.J2.

p = 3,A = 23, χ = χ2, and Ggeom is the Conway group Co3.

22



In addition, there are four infinite families, in which q denotes a
power of p and we are in characteristic p.

p odd, A = (q + 1)/2, χ = 1 or χ2: Ggeom is the image of SL2(q)
in a Weil representation.

p odd, A = 2q − 1, χ = χ2: Ggeom = A2q in its deleted
permutation representation.

A = (qn + 1)/(q + 1) with n ≥ 3 odd and χq+1 = 1: Ggeom is the
image of SUn(q) in a Weil representation (except for the special
case (n = 3,q = 2) of SU3(2)).

A = q + 1 = pf + 1, and χ = 1. If p > 2, Ggeom is the
Heisenberg group p1+2f

+ of order pq2 and exponent p. If p = 2,
Ggeom is the extraspecial 2-group 21+2f

− . We also have the
degenerate case A = 2 = 1 + p0 with p odd, whose Ggeom is the
cyclic group of order p.
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If Ggeom is infinite then Ggeom is

SpA−1 if A is odd, and χ = 1.

SOA if A 6= 7 is odd, p is odd, and χ = χ2.

G2 if A = 7, p is odd, and χ = χ2.

SLA if A is odd and χ2 6= 1.

SLA−1 if A ≥ 4 is even and χ = 1.(The A = 2, χ = 1) case is on
the finite list.)

SLA if A ≥ 4 is even and χ 6= 1.

{g ∈ GL2|det(g)p = 1} if A = 2 and χ 6= 1.
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the hyperelliptic case
Here we can be very brief: we know nothing. Does/should the

answer depend on which hyperelliptic curve we work on?
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MUCH REMAINS TO BE DONE.
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