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Notations

This is joint work with Emmanuel Letellier.

Let k be an algebraic closed �eld of positive characteristic and ` a
prime number which is invertible in k

Let G = GLn. Let T be the maximal torus of diagonal matrices

and B = TU be the Borel subgroup of upper triangular matrices.

Let NG (T ) be the normalizer of T in G and W = NG (T )/T be

the Weyl group of G .

Denote by g, t, u and b the Lie algebras of G , T , U and B .
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Lusztig induction and restriction

Let

X = {(x , t, gB) ∈ g× G/B | g−1xg ∈ t + u ⊂ b}

and its two projections

t X
p //qoo g .

We have the Lusztig induction and restriction functors

Ind : Db
c (t)→ Db

c (g), K 7→ p!q
∗K

Res : Db
c (g)→ Db

c (t), K 7→ q!p
∗K

between bounded derived categories of constructible `-adic sheaves.
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Cohomological correspondance

Notice that g, t and X are schemes over

car := t//W = Spec(k[t]W ) = Spec(k[g]G ) = g//G

and that p and q are car-morphisms. Concretely, car is the a�ne

space of unitary polynomials of degree n and t ⊂ g→ car takes t or
x to its characteristic polynomial.

Then we have the following commutative diagram

X
p

%%

q

yy
f
��

t S = t×car g prg
//

prt
oo g

where f = (q, p).
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Operator with kernel version

Lemma

• X
f−→ S

prg−→ g is the Stein factorization of p.

• prg : S → g is a Galois rami�ed covering with group W .

• f : X → S is a small resolution of singularities of S.

In particular

ICS = f!Q`,S ∈ Db
c (S).

The functors Ind and Res may be also de�ned by

Ind(K ) = prg,! (pr∗tK ⊗ ICS)

Res(K ) = prt,!
(
pr∗gK ⊗ ICS

)
.
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W -equivariant version

Let G = [g/G ] (adjoint action). We have the commutative diagram

t

π

��

t×car G
prG //prtoo

π×id
��

G

[t/W ] [t/W ]×car G
prG

99

prtoo

where π and π × id are W -torsors.

ICS descends to the intersection complex IC[t/W ]×carG .

Therefore the functors Res and Ind factorize as

Ind = I ◦ π! and Res = π∗ ◦ R

with I : Db
c ([t/W ])→ Db

c (G) and R : Db
c (G)→ Db

c ([t/W ]).
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Over the regular semisimple open subset

The previous construction is neat, but not perfect.

Over carrss, the regular semisimple open subset (unitary degree n

polynomials with n distincts roots), our correspondance is

carrss = [tG -reg/W ]
prt←− Srss

prg
= Grss = [tG -reg/NG (T )]

and I rss and R rss are the pullback and the direct image by the

morphism Grss → carrss.

So it is natural to try to replace [t/W ] by [t/NG (T )].



Over the regular semisimple open subset

The previous construction is neat, but not perfect.

Over carrss, the regular semisimple open subset (unitary degree n

polynomials with n distincts roots), our correspondance is

carrss = [tG -reg/W ]
prt←− Srss

prg
= Grss = [tG -reg/NG (T )]

and I rss and R rss are the pullback and the direct image by the

morphism Grss → carrss.

So it is natural to try to replace [t/W ] by [t/NG (T )].



Over the regular semisimple open subset

The previous construction is neat, but not perfect.

Over carrss, the regular semisimple open subset (unitary degree n

polynomials with n distincts roots), our correspondance is

carrss = [tG -reg/W ]
prt←− Srss

prg
= Grss = [tG -reg/NG (T )]

and I rss and R rss are the pullback and the direct image by the

morphism Grss → carrss.

So it is natural to try to replace [t/W ] by [t/NG (T )].



Stack version

We have:

• the quotient car-stacks

G = [g/G ], T = [t/T ], B = [X/G ] = [b/B]

for the adjoint actions (trivial action for T );

• the commutative diagram

B
p

&&

q

xx
(q,p)
��

T S = T ×car G prG
//

prT
oo G

where q is induced by the projections b→ t and B → T and p

is induced by the inclusions b ⊂ g and B ⊂ G .
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Cohomological correspondence for the Lusztig functors

We have the Lusztig induction and restriction functors

Ind : Db
c (T )→ Db

c (G), K 7→ p!q
∗K = prG,!(pr

∗
T K ⊗N )

Res : Db
c (G)→ Db

c (T ), K 7→ q!p
∗K = prT ,!(pr

∗
GK ⊗N )

where

N = (q, p)!Q`,B ∈ Db
c (T ×car G)

is the cohomological kernel.

The new construction is perfect over the regular semisimple open

subset of car, but the kernel N is not anymore an intersection

complex.
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Main question

We denote by π : T = [t/T ]→ T := [t/NG (T )] the map induced

by T ⊂ NG (T ). It is a W -torsor.

Question
(1) Does the functors Res and Ind factorize as

Ind = I ◦ π! and Res = π∗ ◦ R

for some triangulated functors

I : Db
c (T )→ Db

c (G) and R : Db
c (G)→ Db

c (T ) ?

(2) Does the functors I and R are inverse equivalences of categories

between Db
c (T ) and Db

c (G) ?
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Main question : descent of N ?

We have the following commutative diagram

T
π

��

S = T ×car G
prG //prToo

π×id
��

G

T S = T ×car G
prG

99

prToo

where π : T → T and π × id are W -torsors.

Part (1) of our question can be rephrased as:

Can we equip N with a W -equivariant structure and thus descend

it to a complex N on T ×car G.

Our functors I and R would then be de�ned by

I(K ) = prG,!
(
pr∗T K ⊗N

)
, R(K ) = prT ,!

(
pr∗GK ⊗N

)
.
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C version

For any locally closed smooth subset C ⊂ car, denote by an (−)C
the restriction to C of any object over car.

Notice that fC : XC → SC is a semi-small resolution of singularities

of SC .

We have the Lusztig induction and restriction functors

IndC : Db
c (TC )→ Db

c (GC ), K 7→ pC ,!q
∗
CK

ResC : Db
c (GC )→ Db

c (TC ), K 7→ qC ,!p
∗
CK

with kernel

N|SC = (q, p)C ,!Q`,BC ,

which are compatible with Ind and Res.
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Our result

Let us consider the strati�cation

car =
⋃̇
ν

Cν ,

ν = (ν1 ≥ ν2 ≥ · · · ) partition of n, Cν the set of polynomials

c(z) = (z − t1)ν1(z − t2)ν2 · · · with ti 6= tj if i 6= j .

Theorem
The complex N|Cν can be equipped with a W -invariant structure

for any ν. We thus have functors ICν and RCν such that

IndCν = ICν ◦ πCν ,! and ResCν = π∗Cν
◦ RCν .

They are inverse equivalences of categories.
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Remarks

• For the trivial partition, C(n) = A1 and over C(n) of our main

diagram becomes the product by A1 of

B(T )

��

Snil = B(T )× Gnil //oo

��

Gnil

B(NG (T )) Snil = B(NG (T ))× Gnil

77

oo

where Gnil is the nilpotent cone. Therefore

Db
c (B(NG (T ))) ∼= Db

c (Gnil).

Laura Rider has computed Db
c (Gnil) by other means.

• By a descent to Levi argument, we are essentially reduced to

prove that N nil = N|Snil descends to Snil.
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Descent of N nil (I)

In the rest of the talk, I will explain how we descend N nil to

B(NG (T ))× Gnil. Here are the main steps:

• B(T )× Gnil can be embedded into B(T )× G and N nil is the

restriction to B(T )× Gnil of

P = p̂!δ!Q`,B
where

δ : B diag // B × B // B(T )× B = B̂

is a T -torsor and

p̂ = id× p : B̂ → B(T )× G = Ĝ

is proper and small.

• δ!Q`,B is the outcome of a Postnikov diagram, built over

Chern class morphisms.
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Descent of N nil (II)

• P is thus the outcome of a Postnikov diagram, whose vertices

of the base of are intersection complexes.

• By a weight argument, we prove that the base of that

Postnikov diagram is rigid, i.e. the Postnikov diagram is

completely determined by its base.

• Therefore, in order to descend the Postnikov diagram, it is

enough to descend its base.

• Finally we show that the base can be equipped with an action

of W .
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Postnikov diagrams

In a triangulated category D, a Postnikov diagram Λ is a diagram

Cm

αm
��

Cm−1
+1oo

αm−1

��

· · ·+1oo C1

α1
��

C0
+1oo

Am
∂m

//

dm
77

Am−1
∂m−1

//

dm−1

88

· · · A1
∂1

//

d1

88

A0

where the upper triangles are all distinguished and the bottom

triangles are all commutative. Notice that ∂i−1 ◦ ∂i = 0, ∀i .

The base Λb of Λ is the complex

Am
∂m // Am−1

∂m−1 // · · · // A2
∂2 // A1

∂1 // A0

in D. The object Cm ∈ D is the outcome of Λ.
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The Postnikov diagram Λ(K )

If D is equipped with a non degenerate t-structure, then we can

de�ne a Postnikov diagram Λ(K ) for any K ∈ D[n,n+m] as follows.

For each integer 0 ≤ i ≤ m, we have the usual distinguished triangle

τ≤n+i−1K // τ≤n+iK // Hn+iK [−n − i ] // .

Those distinguished triangles de�ne a Postnikov diagram Λ(K ): we
put

Ci := τ≤n+iK [n − i ], Ai := Hn+iK [−2i ],

we de�ne the distinguished triangles of the Postnikov diagram by

rotating the above triangles and we set ∂i = αi−1 ◦ di .

The outcome of Λ(K ) is K and the construction of Λ(K ) is

functorial in K .



The Postnikov diagram Λ(K )

If D is equipped with a non degenerate t-structure, then we can

de�ne a Postnikov diagram Λ(K ) for any K ∈ D[n,n+m] as follows.

For each integer 0 ≤ i ≤ m, we have the usual distinguished triangle

τ≤n+i−1K // τ≤n+iK // Hn+iK [−n − i ] // .

Those distinguished triangles de�ne a Postnikov diagram Λ(K ): we
put

Ci := τ≤n+iK [n − i ], Ai := Hn+iK [−2i ],

we de�ne the distinguished triangles of the Postnikov diagram by

rotating the above triangles and we set ∂i = αi−1 ◦ di .

The outcome of Λ(K ) is K and the construction of Λ(K ) is

functorial in K .
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The T -torsor δ

The T -torsor δ : B → B̂ = B(T )× B has a Chern class morphism

X ∗(T )→ H2(B̂,Q`)(1) which may be viewed as a morphism

cδ : Q`,B̂ → X∗(T )⊗Q`,B̂[2](1)

in Db
c (B̂).

The base of the Postnikov diagram Λ(δ!Q`) is the complex

Q`,B̂[−2n](−n)
∂n−→ X∗(T )⊗Q`,B̂[2− 2n](1− n)

∂n−1−→ · · ·

· · ·
n−1∧

X∗(T )⊗Q`,B̂[−2](−1)
∂1−→

n∧
X∗(T )⊗Q`,B̂

where

∂n−i+1(v) = v ∧ cδ(1).
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P as an outcome of a Postnikov diagram

P = p̂∗δ!Q`,B is the outcome of the Postnikov diagram

Λ = p̂∗Λ(δ!Q`,B).

As p : B → G is proper and small and its restriction to Grss is an
étale Galois covering of group W , we have p̂∗Q`,B̂ = ICĜ(L̂) where
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Rigid Postinikow complex

A complex

A = ( Am
// Am−1 // · · · // A1

// A0 )

in D is a rigid Postinikow complex if it satis�es

Hom(Aj ,Ai ) = 0, ∀j < i ,

and

Hom(Aj ,Ai [−k]) = 0, ∀j > i , k ≥ 1.

Theorem
Given a rigid Postinikow complex A in D, then there exists a unique

(up to a unique isomorphism) Postnikov diagram Λ in D such that

Λb = A.
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Purity property

All the stacks and stack morphisms that we have introduce are

de�ned over a �nite �eld ko ⊂ k and cohomological weights make

sense.

Proposition (Purity)

Ext2i+1
G (ICG(L), ICG(L)) = 0 and Ext2iG (ICG(L), ICG(L)) is pure

of weight 2i for all i .

Since Ĝ = B(T )× G and since the statement of the proposition is

true if we replace G by B(T ), by Künneth formula we get:

Corollary

Ext2i+1

Ĝ (ICĜ(L̂), ICĜ(L̂)) = 0 and Ext2iĜ (ICĜ(L̂), ICĜ(L̂)) is pure

of weight 2i for all i .
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Proof of the purity property (I)

Consider the cartesian diagram

Z := B ×G B
pr

2 //

pr
1

��

B
p

��
B p // G

Since ICG(L) = p!Q`,B, by the base change theorem we have

Extj(ICG(L), ICG(L)) = H j(Z, pr!
2Q`,B),

and therefore, by Poincaré duality, we have

Extj(ICG(L), ICG(L)) = H−jc (Z,Q`)
∨,

for all j (B is smooth of dimension 0 over k).
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Proof of the purity property (II)

The canonical morphisms B → B(B) and G → B(G ) induce a

morphism
ϕ : Z → B(B)×B(G) B(B) = [B\G/B].

Denote

Z =
⋃̇

w∈W
Zw

the inverse image by ϕ of the strati�cation

[B\G/B] =
⋃̇

w∈W
[B\BwB/B].

Lemma
We have [B\BwB/B] = B(Bw ) with Bw = TUw = B ∩ wBw−1,
and Zw = [bw/Bw ] where bw is the Lie algebra of Bw .
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Proof of the purity property (III)

Choosing a suitable total order {w0,w1, . . . } on W , we get a

decreasing �ltration

Z = Z0 ⊃ Z1 ⊃ · · · ⊃ Z|W |−1 ⊃ Z|W | = ∅

by closed substacks such that Zi\Zi+1 = Zwi for all i .

By a standard spectral sequence argument, the purity property

follows from

H i
c(Zw ,Q`) = H

i−2dim(t)
c (B(T ),Q`)(−dim(t))

and the purity of the cohomology with compact supports of B(T ).



Proof of the purity property (III)
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Postnikov rigidity of Λb

By the standard exact sequence relating cohomology of a stack

over ko to the cohomology of its extension to k , we get:

Corollary

For all j < i , we have

Hom(ICĜo (Lo)[−2j ](−j), ICĜo (Lo)[−2i ](−i)) = 0

and for all j > i and k ≥ 1, we have

Hom(ICĜo (Lo)[−2j ](−j), ICĜo (Lo)[−2i − k](−i)) = 0

(indice o for taking into account the ko-structure).

Proposition

The Postnikov diagram Λ = Λ(P), P = p̂!δ!Q`,B, is the unique

Postnikov diagram de�ned over ko that completes Λb.
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Descent of P

Therefore, in order to show that P, which is the outcome of Λ,
descends from B(T )×car G to B(NG (T ))×car G, it is enough to

prove that Λb descends.

The intersection complex ICĜ(L̂) descends to B(NG (T ))×car G.

We are thus reduced to prove that

p̂∗(cδ) : ICĜ(L̂)→ X∗(T )⊗ ICĜ(L̂)[2](1)

is W -equivariant.
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Key propositions

Proposition

If we now denote by δ the T -torsor Ḃ = [b/U]→ [b/B] = B, then
its Chern class

cδ : X ∗(T )→ H2(B,Q`) = H2(G, ICG(L))

is W -equivariant for the Springer action on the target.

Proposition

The functoriality morphism

p∗ : H2(B,Q`) = HomB(Q`,B,Q`,B[2])→ HomG(p∗Q`,B, p∗Q`,B[2])

is W -equivariant for the actions on the source and the target

induced by the W -action on p∗Q`,B = ICG(L).
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Proof of W -equivariance of cδ

The T -torsor Ḃ → B is the pull-back of the canonical T -torsor

Spec(k)→ B(T ) by the morphism B = [b/B]→ B(T ) induced by

b→ Spec(k) and B → T .

Moreover the restriction map H2(B(T ),Q`)→ H2(B,Q`) is a

W -equivariant isomorphism.

Our statement follows from the fact that the Chern class morphism

X ∗(T )→ H2(B(T ),Q`)

is W -equivariant.
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Proof of W -equivariance of p∗ (I)

We have seen that

HomG(p∗Q`,B, p∗Q`,B[2]) = H2(Z, pr!
2Q`,B).

The morphism

p∗ : H2(B,Q`)→ HomG(p∗Q`,B, p∗Q`,B[2])

is dual to the restriction to the diagonal B ⊂ B ×G B = Z

H−2c (Z,Q`)→ H−2c (B,Q`).



Proof of W -equivariance of p∗ (I)

We have seen that

HomG(p∗Q`,B, p∗Q`,B[2]) = H2(Z, pr!
2Q`,B).

The morphism

p∗ : H2(B,Q`)→ HomG(p∗Q`,B, p∗Q`,B[2])

is dual to the restriction to the diagonal B ⊂ B ×G B = Z

H−2c (Z,Q`)→ H−2c (B,Q`).



Proof of W -equivariance of p∗ (II)

For w ∈W , we have the strata Zw = [bw/Bw ] and a commutative

square

Zw �
� //

qw

��

Z
(q,q)

��
t �
�

∆w

// t×car t

where ∆w (t) = (t,w(t)).

It follows that the cohomology sheaves (q, q)!Q`,Z is the abutment

of a spectral sequence starting in E2 with the cohomology sheaves

of the

∆w ,∗qw ,!Q`,Zw = ∆w ,∗Q`,t ⊗ RΓc(B(T ),Q`).
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Proof of W -equivariance of p∗ (III)

As Hodd
c (B(T ),Q`) = 0, the spectral sequence degenerate in E2.

It follows that Rodd(q, q)!Q`,Z = 0 and that each R2i (q, q)!Q`,Z is

successive extensions of the ∆w ,∗Q`,t ⊗ H2i
c (B(T ),Q`).

Consequently, up to a shift, R2i (q, q)!Q`,Z is a perverse sheaf on

t×car t which is the middle extension of its restriction to the open

subset treg ×car t
reg.

We thus have a (W ×W )-equivariant morphism

R2i (q, q)!Q`,Z = ∆∗Q` ⊗ H−2ic (B(T ),Q`)

where ∆ = (∆w )w∈W : W × t→ t×car t is the normalization

morphism.
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Proof of W -equivariance of p∗ (IV)

But

H j
c(t×car t,∆∗Q`,W×t) = 0

for j 6= 2n = 2dim(t).

As a consequence, we get a (W ×W )-equivariant isomorphism

H−2ic (Z,Q`) = H−2ic (t×car t, (q, q)!Q`,Z)

= H2n
c (t×car t,∆∗Q`)⊗ H−2n−2ic (B(T ),Q`).

The restriction map H−2ic (Z,Q`)→ H−2ic (B,Q`) is induced by the

restriction map

∆∗1 : H2n
c (t×car t,∆∗Q`)→ H2n

c (t,Q`)

Therefore it is W -equivariant for the diagonal action.
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As a consequence, we get a (W ×W )-equivariant isomorphism

H−2ic (Z,Q`) = H−2ic (t×car t, (q, q)!Q`,Z)

= H2n
c (t×car t,∆∗Q`)⊗ H−2n−2ic (B(T ),Q`).

The restriction map H−2ic (Z,Q`)→ H−2ic (B,Q`) is induced by the

restriction map

∆∗1 : H2n
c (t×car t,∆∗Q`)→ H2n

c (t,Q`)

Therefore it is W -equivariant for the diagonal action.


