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Notations

This is joint work with Emmanuel Letellier.

Let k be an algebraic closed field of positive characteristic and 7 a
prime number which is invertible in k

Let G = GL,. Let T be the maximal torus of diagonal matrices
and B = TU be the Borel subgroup of upper triangular matrices.

Let Ng(T) be the normalizer of T in G and W = Ng(T)/T be
the Weyl group of G.

Denote by g, t, u and b the Lie algebras of G, T, U and B.
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Lusztig induction and restriction

Let
X={(x,t,gB)eagxG/B|gxget+uch}

and its two projections

t<LXL>g.

We have the Lusztig induction and restriction functors

Ind : D?(t) — DP(g), K — pig*K

Res : D2(g) — DP(t), K — qip*K

between bounded derived categories of constructible ¢-adic sheaves.



Cohomological correspondance

Notice that g, t and X are schemes over
cat = /W = Spec(k[§") = Spec(kla]®) = 8//G

and that p and g are cat-morphisms. Concretely, cat is the affine
space of unitary polynomials of degree n and t C g — car takes t or
x to its characteristic polynomial.



Cohomological correspondance

Notice that g, t and X are schemes over
cat = /W = Spec(k[§") = Spec(kla]®) = 8//G

and that p and g are cat-morphisms. Concretely, cat is the affine
space of unitary polynomials of degree n and t C g — car takes t or
x to its characteristic polynomial.

Then we have the following commutative diagram

where f = (q, p).
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Operator with kernel version

Lemma
o x sy g is the Stein factorization of p.
® pry: S — g is a Galois ramified covering with group W.
e f: X — S is a small resolution of singularities of S.

In particular
ICs = f!Q&S S DE(S).

The functors Ind and Res may be also defined by
Ind(K) = pry, (priK @ ICs)

Res(K) = pry, (pr;K ®1Cs) .
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W-equivariant version

Let G = [g/G] (adjoint action). We have the commutative diagram

s

[t/ W] <= [t/ W] Xcae G
where 7 and 7 x id are W-torsors.
ICs descends to the intersection complex IC[w)x ..g-
Therefore the functors Res and Ind factorize as
Ind=Iom and Res=7"0oR

with I: D2([t/W]) — DE(G) and R : DE(G) — Db([t/W]).
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The previous construction is neat, but not perfect.

Over cat"™*, the regular semisimple open subset (unitary degree n
polynomials with n distincts roots), our correspondance is

car’™s — [tG—reg/W] Pl grss o G — [tG—reg/NG(T)]

and /™° and R™* are the pullback and the direct image by the
morphism G"™* — cat™s,

So it is natural to try to replace [t/ W] by [t/Ng(T)].
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Stack version

We have;

® the quotient cat-stacks
G=I[g/Gl, T=I[t/Tl, B=I[X/G]=I[b/B]

for the adjoint actions (trivial action for T);
® the commutative diagram
B
/ l(N
TWSZTXcatg?rg'g

where g is induced by the projections b —tand B — T and p
is induced by the inclusions b C g and B C G.
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We have the Lusztig induction and restriction functors
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Cohomological correspondence for the Lusztig functors

We have the Lusztig induction and restriction functors

Ind : D2(T) — D2(G), K — pig*K = prg,(pr7K @ N)

Res : D(G) = D2(T), K = quip™K = prr(prgK @ N)
where
N = (q, p)!QK,B S DE(T Xcar g)
is the cohomological kernel.
The new construction is perfect over the regular semisimple open

subset of cat, but the kernel N is not anymore an intersection
complex.
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Main question

We denote by 7 : T = [t/T] — T := [t/Ng(T)] the map induced
by T C Ng(T). Itisa W-torsor.

Question

(1) Does the functors Res and Ind factorize as
Ind=TIom and Res=7"oR
for some triangulated functors
1:DE(T) = DE(G) and R:DE(G)— DE(T) ?

(2) Does the functors I and R are inverse equivalences of categories
between DE(T) and D2(G) ?
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Main question : descent of A/ ?

We have the following commutative diagram

pro

T S =T X G —2-G

T

7- <PYT 3 :7- Xear g
where 7 : T — T and 7 x id are W-torsors.

Part (1) of our question can be rephrased as:

Can we equip N with a W-equivariant structure and thus descend
it to a complex N on T X G.

Our functors T and R would then be defined by

I(K) =pig, (prrK @ N), R(K)=Dprr, (PrgK @ N).
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C version

For any locally closed smooth subset C C car, denote by an (—)¢
the restriction to C of any object over car.

Notice that fc : Xc — Sc is a semi-small resolution of singularities
of Sc.

We have the Lusztig induction and restriction functors

Indc : D2(Tc) — D2(Gc), K+ pcigeK

Resc . Dg(gc) — D?(Tc), K — qCV!sz

with kernel

N|Sc =(9,p)c,1 Q5.

which are compatible with Ind and Res.
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Our result

Let us consider the stratification
cat = UCV’
14

v=(v1 > 1o >---) partition of n, G, the set of polynomials
C(z) = (z — tl)l’l(z _ t2)l/2 ... with ti ?g tj if #J

Theorem
The complex N'|C,, can be equipped with a W-invariant structure
for any v. We thus have functors Ic, and R¢, such that

IndC,, = ICU oOTC,,! and Rescu = 7T*CV o RCV'

They are inverse equivalences of categories.
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Remarks

® For the trivial partition, () = A and over C(n) of our main
diagram becomes the product by Al of

B(T) Snil — B(T) % gnil gnil

| |

B(Ng(T))<— 38" = B(Ng(T)) x g
where G"! is the nilpotent cone. Therefore

D(B(Ng(T))) = D2(G™).

Laura Rider has computed D2(G"") by other means.

® By a descent to Levi argument, we are essentially reduced to
—nil

prove that N = \/|SM! descends to S’
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In the rest of the talk, | will explain how we descend N o
B(Ng(T)) x G"I. Here are the main steps:

® B(T) x G"! can be embedded into B(T) x G and N is the
restriction to B(T) x G"! of

P = p101Qe s
where
§: B BB ~B(T)xB=A8
is a T-torsor and
p=idxp:B=B(T)xG=¢
is proper and small.

® 5/Q¢ is the outcome of a Postnikov diagram, built over
Chern class morphisms.
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Descent of A (1)

P is thus the outcome of a Postnikov diagram, whose vertices
of the base of are intersection complexes.

By a weight argument, we prove that the base of that
Postnikov diagram is rigid, i.e. the Postnikov diagram is
completely determined by its base.

Therefore, in order to descend the Postnikov diagram, it is
enough to descend its base.

Finally we show that the base can be equipped with an action
of W.
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In a triangulated category D, a Postnikov diagram N is a diagram

Cm
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Postnikov diagrams

In a triangulated category D, a Postnikov diagram N is a diagram

Cm

+1 +1
am Am—1
A 6m AM71 8,,—,71

m A1 — Y, Ao

where the upper triangles are all distinguished and the bottom
triangles are all commutative. Notice that 0;_1 0 9; = 0, Vi.

The base Ay, of A is the complex

8,-" 8m— 1 62

Am_1 o A, o1

Am Ay Ao

in D. The object Cp, € D is the outcome of A.
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put .
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The Postnikov diagram A(K)

If D is equipped with a non degenerate t-structure, then we can
define a Postnikov diagram A(K) for any K € DI""+ml as follows.

For each integer 0 < i < m, we have the usual distinguished triangle
T<nti-itK — T<piiK — HHK[—n—i] — .

Those distinguished triangles define a Postnikov diagram A(K): we
put .

C,' = T§n+,'K[n — i]7 A,‘ = Hn+’K[—2i],
we define the distinguished triangles of the Postnikov diagram by
rotating the above triangles and we set 0; = aj_1 o d|.

The outcome of A(K) is K and the construction of A(K) is
functorial in K.



The T-torsor ¢

The T-torsor § : B — B =B(T) x B has a Chern class morphism
X*(T) — H?(B,Qy)(1) which may be viewed as a morphism

G5 Qup — X(T) ® Q 02)(1)

in D2(B).



The T-torsor ¢

The T-torsor § : B — B =B(T) x B has a Chern class morphism
X*(T) — H?(B,Qy)(1) which may be viewed as a morphism

& Qs — X(T) @ Q, 5l2)(1)
in D2(B).
The base of the Postnikov diagram A(0,Qy) is the complex

1

Qy l=2n](=n) D X(T) @ Q, 5[2 —2n](1 = n) i S

- A XAT) ©Q 5[-2](~ o /\X )® Q5

where
On—i+1(v) = v A cs(1).
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P as an outcome of a Postnikov diagram

P = p.61Qy 3 is the outcome of the Postnikov diagram
N = pN(61QrB).

As p : B — G is proper and small and its restriction to G™5 is an
étale Galois covering of group W, we have p.Q, 3 = IC(L) where

L= Qq(1) W L is an (-adic local system on grss.

The base Ay, of A is:

ICg(D)[-2n](—n) 2 X.(T) @ 1C4(£)[2 — 2n)(1 — n) 2 .

n—1
.</\ X*(T)>®IC (£) (/\X )@1%(&)

where
On-iv1(v ®@s) = v A pi(cs)(s).



Rigid Postinikow complex

A complex

A=(An Am—1 A

in D is a rigid Postinikow complex if it satisfies
Hom(Aj,A,-) =0, Vj<i,

and
Hom(Aj,A,-[—k]) =0, Vj>1i, k>1.

Ao)



Rigid Postinikow complex

A complex

A=(An Am-1 A1 Ao)
in D is a rigid Postinikow complex if it satisfies
Hom(Aj,A,-) =0, Vj<i,

and
HOHI(AJ',A,'[—/(]) =0, Vj>1i, k>1.

Theorem
Given a rigid Postinikow complex A in D, then there exists a unique

(up to a unique isomorphism) Postnikov diagram N in D such that
Ap = A.
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Purity property

All the stacks and stack morphisms that we have introduce are
defined over a finite field k, C k and cohomological weights make
sense.

Proposition (Purity)

Exty 1 (ICg(L),ICg(L)) = 0 and Ext% (ICg(L),1Cg(L)) is pure
of weight 2i for all i.

Since G = B(T) x G and since the statement of the proposition is
true if we replace G by B(T), by Kiinneth formula we get:

Corollary
Exté’“(ICé(L), IC¢(£)) = 0 and ExtZ (IC4(L), 1C4(L)) is pure
of weight 2i for all i.
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Proof of the purity property (I)

Consider the cartesian diagram

Z:=BxgB-2-B

o | i”

34p>g

Since ICg(L) = pQy 5, by the base change theorem we have
Ext/(ICg(£),1Cq(L)) = H(Z, pryQep5),
and therefore, by Poincaré duality, we have
Ext/(ICg(£),10g(£)) = H/ (2. Q)"

for all j (B is smooth of dimension 0 over k).
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¢ : Z — B(B) xp(¢) B(B) = [B\G/B].



Proof of the purity property (II)

The canonical morphisms B — B(B) and G — B(G) induce a
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Proof of the purity property (II)

The canonical morphisms B — B(B) and G — B(G) induce a
morphism
¢ : Z — B(B) xp(¢) B(B) = [B\G/B].

Z = UZW

weW

Denote

the inverse image by ¢ of the stratification

[B\G/B] = | J [B\BwB/B].

weWw
Lemma
We have [B\BwB/B] = B(By,) with B, = TUy, = BN wBw™!,
and Z,, = [by/By]| where b, is the Lie algebra of B,,.
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Proof of the purity property (1)

Choosing a suitable total order {wg, wi,...} on W, we get a
decreasing filtration

Z=20D021D - DZ‘W|_1 DZ‘W| =0
by closed substacks such that Z;\Z;; = Z,, for all /.

By a standard spectral sequence argument, the purity property
follows from

Hi(Z,, Qg) = H 2O (B(T), Qo) (—dim(t))

and the purity of the cohomology with compact supports of B(T).



Postnikov rigidity of Ay,

By the standard exact sequence relating cohomology of a stack
over ko, to the cohomology of its extension to k, we get:

Corollary
For all j < i, we have

Hom(ICg, (£0)[=2/1(—)), ICg, (£Lo)[-2/](=1)) = 0

and for all j > i and k > 1, we have

Hom(IC; (£o)[=2/1(—)),1Cqg, (Lo)[-2i — k](=1)) = 0

(indice o for taking into account the ko-structure).



Postnikov rigidity of Ay,

By the standard exact sequence relating cohomology of a stack
over ko, to the cohomology of its extension to k, we get:

Corollary
For all j < i, we have

Hom(ICg, (£0)[=2/1(—)), ICg, (£Lo)[-2/](=1)) = 0

and for all j > i and k > 1, we have

Hom(ICg (Lo)[—2/1(—)),1C¢, (Lo)[—-2i — k](=i)) =0
(indice o for taking into account the ko-structure).

Proposition
The Postnikov diagram A = N(P), P = p161Qe g, is the unique
Postnikov diagram defined over k, that completes Ny,
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Descent of P

Therefore, in order to show that P, which is the outcome of A,
descends from B(T) X¢qc G to B(NG(T)) Xcar G, it is enough to
prove that A, descends.

The intersection complex ICgA(EA) descends to B(Ng(T)) Xcar G-
We are thus reduced to prove that
pu(cs) 1 1Cg(L) = X.(T) @ IC4(L£)[2)(1)

is W-equivariant.
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Proposition
If we now denote by & the T-torsor B =[b/U] — [b/B] = B, then
its Chern class

¢ 1 X*(T) — H*(B,Qp) = H*(G,1Cg(L))

is W-equivariant for the Springer action on the target.



Key propositions

Proposition
If we now denote by & the T-torsor B =[b/U] — [b/B] = B, then
its Chern class

cs : X*(T) = H*(B, Q) = H*(G.1Cq(L))
is W-equivariant for the Springer action on the target.

Proposition
The functoriality morphism

p« : H*(B,Qq) = Homp(Qy 5, Qr,5[2]) — Homg(p. Q5. p+Qr,5[2])

is W -equivariant for the actions on the source and the target
induced by the W-action on p,Qu 5 = ICg(L).
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The T-torsor B — B is the pull-back of the canonical T-torsor
Spec(k) — B(T) by the morphism B = [b/B] — B(T) induced by
b — Spec(k) and B — T.
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Proof of W-equivariance of ¢s

The T-torsor B — B is the pull-back of the canonical T-torsor
Spec(k) — B(T) by the morphism B = [b/B] — B(T) induced by
b — Spec(k) and B — T.

Moreover the restriction map H2(B(T), Q) — H?(B,Qy) is a
W-equivariant isomorphism.

Our statement follows from the fact that the Chern class morphism
X*(T) — H*(B(T), Q)

is W-equivariant.



Proof of W-equivariance of p, (1)

We have seen that

Homg (p.Qy,5, p+Qe,5[2]) = H*(Z,pryQ5).



Proof of W-equivariance of p, (1)

We have seen that

Homg (p.Qy,5, p+Qe,5[2]) = H*(Z,pryQ5).

The morphism

Ps - H2(B,@3) — Homg(P*QE,BaP*@é,B[Q])

is dual to the restriction to the diagonal BC BxgB=2Z

HZ%(2,Qp) — HZ*(B,Qy).



Proof of W-equivariance of p, (Il)

For w € W, we have the strata Z,, = [b,,/By] and a commutative

square
Zy—Z

qwl l(q,q)

tC—A>t Xear t

where A, (t) = (¢, w(t)).



Proof of W-equivariance of p, (II)

For w € W, we have the strata Z,, = [b,,/By] and a commutative

square
Zy—Z

qwl l(q,q)

’LC—A>’tXcatt
where A, (t) = (t, w(t)).

It follows that the cohomology sheaves (g, g)1Qy, z is the abutment
of a spectral sequence starting in E, with the cohomology sheaves
of the

AW,*qW,!QZ,ZW = AW,*QK,{ ® ch(B(T)a @4)



Proof of W-equivariance of p, (lll)

As H244(B(T), Q) = 0, the spectral sequence degenerate in Ey.



Proof of W-equivariance of p, (lll)

As H244(B(T), Q) = 0, the spectral sequence degenerate in Ey.

It follows that R°dd(q, q)1Qg,z = 0 and that each R?(q, q)1Qg z is
successive extensions of the Ay, Qg ® H¥(B(T), Q).



Proof of W-equivariance of p, (lll)

As H244(B(T), Q) = 0, the spectral sequence degenerate in Ey.

It follows that R°dd(q, q)1Q¢z =0 and that each R?(q, q)1Qg z is
successive extensions of the Ay, Qg ® H¥(B(T), Q).

Consequently, up to a shift, R%(q,q)1Qy z is a perverse sheaf on
t Xcar t which is the middle extension of its restriction to the open
subset t7°8 x ... t7°8.



Proof of W-equivariance of p, (lll)

As H244(B(T), Q) = 0, the spectral sequence degenerate in Ey.

It follows that R°dd(q, q)1Q¢z =0 and that each R?(q, q)1Qg z is
successive extensions of the Ay, Qg ® H¥(B(T), Q).

Consequently, up to a shift, R%(q,q)1Qy z is a perverse sheaf on
t Xcar t which is the middle extension of its restriction to the open
subset t7°8 x ... t7°8.

We thus have a (W x W)-equivariant morphism

R*(q,9)1Qrz = A.Qp ® HZ%(B(T), Q)

where A = (A )wew : W X t — t X(q t is the normalization
morphism.



Proof of W-equivariance of p, (IV)

But

Hé(t Xtat t, A*QE,WXt) = O
for j # 2n = 2dim(t).



Proof of W-equivariance of p, (IV)

But

Hé(t Xtat t; A*QE,WXt) = O
for j # 2n = 2dim(t).

As a consequence, we get a (W x W)-equivariant isomorphism

ngi(Z)Qg) = ngl(t Xcar tu (q7 q)!QZ,Z)
= H2"(t X cqe t, A Qp) ® HZ2"2(B(T), Q).



Proof of W-equivariance of p, (IV)

But

Hé(t XCCI'C t; A*QE,WXt) = O
for j # 2n = 2dim(t).

As a consequence, we get a (W x W)-equivariant isomorphism

ngi(Z)Qg) = ngl(t Xcar tu (q7 q)!QZ,Z)
= H2"(t X cqe t, A Qp) ® HZ2"2(B(T), Q).

The restriction map HZ%/(Z,Qq) — HZ%/(B,Qy) is induced by the
restriction map

AL H2(E X eqe £, A Q) — H2(¢,Qy)

Therefore it is W-equivariant for the diagonal action.



