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This talk is mainly intended for people who don’t know the Langlands program
at all, for people who are not working in algebraic geometry or automorphic theory.
I want to give an idea for what the Langlands program is about. But I think that
even for people who are working in the subject, it is always good to keep in mind
the general picture.

The Langlands program has to do with number theory. Number theory consists
primarily in the study of the ring of integers Z and the field of rational numbers Q.
At first sight these are very simple objects. However, a basic feature of number the-
ory, and especially of the Langlands program, is that most questions are extremely
elementary, but if the questions are not very easy, they are extremely difficult, and
in order to try to solve them, we need extremely sophisticated theories.

In this talk, I shall present the basic objects of three such sophisticated theories:
algebraic equations, symmetries, and analysis. They are all built from Z or Q, but
in three truly different directions. The general idea of the Langlands program, and
of a closely-related program which can be called the motivic program, is that these
three different theories in some sense tell the same story. The statements relating
these theories are extremely difficult, because the objects in these theories are a
priori completely different and unrelated. It is really a miracle of mathematics that
there exists a relationship between such different objects.

∗These informal notes were taken by Weizhe Zheng. The note taker is responsible for any
inaccuracies.
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The contents of the talk are summarized in the following table.

algebraic equations symmetries analysis

one variable:
number fields

oo Galois theory

(§1)
//

⋂
finite ΓQ-sets

linearization

��

several variables:
varieties over Q

`-adic cohomology // Galois
representationsmotives (§4)

oo oo

Langlands’
correspondence

(§3)
// automorphic
representations

ΓQ
Tannaka
duality

����

ΓQ → C× oo
class field theory

(§2)
//

⋃
A×/Q× → C×

⋃

Γab
Q

Pontryagin
duality

1 Algebraic equations

The theory of algebraic equations is the most elementary among the three, and it is
the theory we are basically interested in.

1.1 Algebraic equations in one variable

An algebraic equation in one variable has the form

P (X) = Xn + an−1X
n−1 + · · ·+ a1X + a0 = 0.

In history, people have been interested in this type of equations for a very long time.
Here “algebraic” means that in the writing of the equation, we only need addition
and multiplication. We need to choose the coefficients an−1, . . . , a0, and the simplest
coefficients are rational coefficients. These can be considered the most elementary
equations in mathematics.

The degree of the equation, n, is a basic ingredient. Equations of degree 1

X + a0 = 0

can be solve immediately: X = −a0. Equations of degree 2

X2 + a1X + a0 = 0

can be solved by introducing an extra symbol
√
• for square roots: X =

−a1±
√
a21−4a0
2

.
In other words, if we can solve equations of the form X2 = a0, then we can solve
equations of degree 2 in general. Equations of degree 3

X3 + a2X
2 + a1X + a0 = 0
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are more difficult to solve. It is known however that they can be solved with the
help of the symbols

√
• and 3

√
• for square roots and cube roots. In other words,

if we can solve equations of the form X2 = a0 and equations of the form X3 = a0,
then we can solve equations of degree 3 in general. Similarly, equations of degree 4

X4 + a3X
3 + a2X

2 + a1X + a0 = 0

can be solved by introducing roots
√
•, 3
√
•, 4
√
• of degrees 2, 3, 4. This has been

known since the 16th century.
Is it possible to solve equations of higher degrees just by introducing n-th roots?

This question remained unsolved for several centuries. In the 19th century, it was
discovered independently by Abel and Galois that equations of degrees at least 5
cannot be solved in this way.

We can rephrase the problem as follows. As the degree becomes higher and
higher, equations become more and more difficult to solve. So one may ask the
following question: In order to solve a general algebraic equation P (X) = 0 of
degree n, is it useful or not to solve some equations of lower degrees? One may
ask an even more general question: Given two algebraic equations P (X) = 0 and
Q(X) = 0 of degrees n and n′, is there a relationship between the two equations?

In order to give a precise meaning to these questions, let us consider an algebraic
equation P (X) = 0 of degree n with coefficients in Q, or more generally with
coefficients in a subfield K of the field of complex numbers C. Here “subfield”
means a subset closed under addition, multiplication, minus, and inverse. Consider
an element α ∈ C, which is a solution of the equation: P (α) = 0. We consider
numbers related to α, namely numbers obtained from α and elements of K by
addition and multiplication. The set of such numbers

K(α) = {bn−1αn−1 + · · ·+ b1α + b0 | bi ∈ K},
is clearly closed under addition, multiplication, and minus, and one can check that
it is also closed under inverse. This set is a subfield of C containing K and we
have dimK(K(α)) ≤ n. Moreover, if the polynomial P (X) is irreducible, then
dimK(K(α)) is precisely n. In this case, the isomorphism class of the field K(α)
does not depend on α and we denote it by KP .

Given two such equations P (X) = 0 and Q(X) = 0, a relation between them is
a morphism from KP to KQ over K, that is, a map k : KP → KQ that preserves
addition and multiplication, and fixes scalars in K. In other words,

k(a+ b) = k(a) + k(b), k(ab) = k(a)k(b)

for a, b ∈ KP , and k|K = idK .
This precise definition of relations between algebraic equations allows us to orga-

nize algebraic equations into a category, which is a collection of objects and relations
(called “morphisms” in technical terms) between objects. We can now phrase the
main theorem of Galois theory as follows.

Theorem (Galois). There exist a group ΓK, called the Galois group of K, and an
equivalence of categories

{irreducible algebraic equations with coefficients in K}
∼−→ {finite sets endowed with transitive actions of ΓK}.
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Relations between finite sets endowed with group actions are defined to be maps
between the sets that are compatible with the group actions. The Galois group ΓK
is a profinite group and we endow it with the profinite topology.

The theorem can be stated more explicitly. We let K denote the set of all solu-
tions of algebraic equations with coefficients in K. This is a subfield of C containing
K, called the algebraic closure of K. The Galois group is the automorphism group
of K over K: ΓK = AutK(K). The equivalence of categories in the theorem carries
an equation P (X) = 0 to the set HomK(KP , K) of morphisms from KP to K over
K. The set is naturally endowed with an action of AutK(K). It is part of the
theorem that this set is finite.

The theorem can in fact be stated and proved for any base field K.
The theorem provides a dictionary between algebraic equations of one variable

and symmetries under the Galois group. Such a dictionary is rather surprising as
it reduces the knowledge of all algebraic equations with coefficients in K and their
mutual relations to the knowledge of one single group, the Galois group ΓK . We are
thus led to the following question.

Question. What is the Galois group of Q (or K)?

This is a fundamental question in mathematics. In fact, the Langlands program
is an attempt to partially answer this question.

1.2 Algebraic equations in several variables

An algebraic equation in d variables has the form

P (X1, . . . , Xd) = 0.

Such an equation defines a geometric object. For example the equation

X2 + Y 2 = 1

defines a circle. More generally, algebraic equations in two variables define curves.
The study of geometric objects defined by algebraic equations is algebraic geometry.
To study algebraic equations in several variables thus means to move from algebra
to algebraic geometry. We will come back to algebraic geometry in Section 4.

2 Abelianization of the Galois group

The abelianization of ΓQ is the maximal abelian quotient and is defined by Γab
Q =

ΓQ/[ΓQ,ΓQ], where [ΓQ,ΓQ] is the commutator subgroup of ΓQ generated by elements
of the form σσ′σ−1σ′−1, σ, σ′ ∈ ΓQ. One hundred fifty years of number theory have
been devoted to the computation of Γab

Q , culminating in the class field isomorphism.

2.1 Class field isomorphism

We have seen that the Galois group ΓQ controls algebraic extensions of Q. The
computation of Γab

Q depends on another kind of extensions, on which we can do
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analysis. We know that the field of real numbers R is the completion of Q with
respect to the usual norm |·|:

Q ↪→ R.

There are norms on Q other than the usual norm. For every prime number p, we
define the p-adic norm |·|p as follows. Every rational number r 6= 0 can be written
as r = ±pvpv11 · · · p

ak
k and we define |r|p = p−v. Thus, the more divisible by p is

r, the smaller is its p-adic norm |r|p. One can check that this is indeed a norm:
|rs|p = |r|p|s|p and |r + s|p ≤ |r|p + |s|p. In fact we have a stronger inequality:
|r + s|p ≤ max{|r|p, |s|p}. The completion of Q with respect to the p-adic norm is
called the field of the p-adic numbers Qp:

Q ↪→ Qp.

Completion is a topological process, and the field obtained are quite different from
algebraic extensions. In fact, R and the Qp’s are uncountable. One can show that
R and the Qp’s are the only completions of Q.

Consider the embedding

Q ↪→ R× (
∏
p

Qp).

Note that for any rational number r 6= 0, we have |r|p = 1 for all but finitely many
p. Consider the subset

A = {(xp)p | |xp|p ≤ 1 for all but finitely many p} ⊆ R× (
∏
p

Qp).

This subset is a ring, called the adèle ring of Q. It is an important object in number
theory. The adèle ring is endowed with a locally compact topology, making it a
topological ring. The embedding

Q ↪→ A

is similar to the embedding Z ↪→ R in that the image subgroup is discrete and
the quotient group is compact. Taking invertible elements, we get an embedding of
topological groups

Q× ↪→ A×

of discrete image. The quotient A×/Q× is a locally compact group, called the idèle
class group.

Theorem (Class field isomorphism). We have an isomorphism of topological groups

Γab
Q ' (A×/Q×) .̂

Here (A×/Q×)̂ denotes the profinite completion of A×/Q×, projective limit of the
finite quotients of A×/Q× by open subgroups.

5



2.2 Characters

The Pontryagin duality says that knowing a profinite abelian group I is equivalent to
knowing the group of continuous characters I → C×, necessarily with finite images.
Thus the class field isomorphism amounts to an equivalence between continuous
characters of Γab

Q and continuous characters of (A×/Q×) :̂

{Γab
Q → C×} ←→ {(A×/Q×)̂→ C×}.

Characters ΓQ → C× factorizes uniquely through Γab
Q . Continuous characters of A×

with finite images factorizes uniquely through A×/Q×. Thus we get an equivalence
between continuous characters with finite images

{ΓQ → C×} ←→ {A×/Q× → C×}.

Let χ : A×/Q× → C× be a continuous character with finite image. Consider the
composition of χ with the projection A× → A×/Q×:

A× → A×/Q× χ−→ C×.

We have A× ⊆ R× ×
∏

pQ×p , and the composite character is a product χ∞
∏

p χp of
local characters χ∞ : R× → C×, χp : Q×p → C×. For all but finitely many p, χp is
trivial on Z×p = {α ∈ Q×p | |α|p = 1}, so that χp factorizes through Q×p /Z×p :

Q×p
� � //

����

A×/Q× χ // C×

Q×p /Z×p .

55

Note that Q×p /Z×p ' Z, with a generator given by the image σp of p. Thus, for all
but finitely many p, χp is determined by the image of σp in C×. One can show that
χ is in fact determined by this family of numbers in C×.

The situation is similar on the Galois side. Let χ : ΓQ → C× be a character. The
diagram of embeddings

Q � � //
� _

��

Q� _

��

Qp
� � // Qp

induces an embedding ΓQp ↪→ ΓQ. For all but finitely many p, the restriction of χ
to ΓQp factorizes through ΓFp :

ΓQp

� � //

����

ΓQ
χ // C×

ΓFp ,

66

where Fp = Z/pZ. We have ΓFp ' Ẑ, and the Frobenius substitution, which we
also denote by σp, is a topological generator. Thus for all but finitely many p, the
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restriction of χ to ΓQp is determined by the image of σp in C×. Moreover, χ is
determined by this family of numbers in C×.

In fact, the equivalence between characters of ΓQ and characters on A×/Q× is
defined by requiring that the associated families of numbers are the same. We can
rephrase this fact as follows. We are interested in Γab

Q and we consider continuous
characters of ΓQ. We have seen that to such a character we can associate a family
of numbers in C×. One can ask the converse question: given a family of numbers in
C×, when does it come from a character of ΓQ?

Theorem (Class field isomorphism, rephrased). A family of numbers in C× indexed
by all but finitely many primes p comes from a continuous character of ΓQ if and
only if it comes from a continuous character with finite image of A×/Q×.

The condition that the family of numbers comes from a character of A×/Q×
means more explicitly that the family of characters χp on Q×p determined by the
family of numbers can be completed to a family indexed by all prime numbers and
∞ so that their product χ∞

∏
p χp, which is a character of A×, is trivial on the

discrete subgroup Q×.

3 Langlands’ correspondence

How to get information about the whole Galois group ΓQ? We need to replace
Pontryagin duality by Tannaka duality, which says that knowing a profinite group
G is equivalent to knowing the (tensor) category of its continuous representations,
namely finite-dimensional vector spaces V over C endowed with an action of G. If
dimC(V ) = r, choosing a basis of V , the action can be written as a homomorphism
G→ GLr(C), necessarily with finite image.

Let ρ : ΓQ → GLr(C) be a continuous representation. As in the case of characters,
for all but finitely many p, the restriction of ρ to ΓQp factorizes through ΓFp :

ΓQp

� � //

����

ΓQ
ρ // GLr(C)

ΓFp .

66

For such p, the conjugacy class of the image of σp is well-defined, and we can con-
sider its eigenvalues, which form an unordered r-tuple of nonzero complex numbers.
We thus get a family of r-tuples of numbers. This family of numerical invariants
characterizes the representation if the representation is irreducible.

We can now ask the converse question: Given a family of r-tuples of nonzero
complex numbers, when does it come from an irreducible Galois representation? Of
course, an answer to this question would provide very deep information about the
Galois group ΓQ itself.

Langlands proposed a conjectural answer as follows. The embedding

GLr(Q) ↪→ GLr(A)
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has discrete image. Since the group GLr is not commutative, the quotient GLr(Q)\GLr(A)
is not a group, but only a topological space endowed with a continuous action of the
group GLr(A) on the right. The invariant measure on GLr(A) induces a measure
on the quotient and we consider the Hilbert space L2(GLr(Q)\GLr(A)) of square-
integrable complex-valued functions on the quotient. This space is a representation
of GLr(A) and is a sum of irreducible representations π of GLr(A). The π’s that
appear in this decomposition are called automorphic representations of GLr(A).

Let π be an automorphic representation of GLr(A). We have GLr(A) ⊆ GLr(R)×∏
p GLr(Qp), and

π = π∞ ⊗
⊗
p

πp,

where π∞ is an irreducible representation of GLr(R) and πp is an irreducible rep-
resentation of GLr(Qp). For all but finitely many p, πp is “unramified” and thus is
naturally parameterized by an unordered r-tuple of nonzero complex numbers.

Conjecture (Langlands’ correspondence). A family of unordered r-tuples of nonze-
ro complex numbers indexed by all but finitely many primes p comes from an irre-
ducible r-dimensional Galois representation of ΓQ only if it comes from an automor-
phic representation of GLr(A).

Note that the number r is present on both sides of the story, but play very
different roles. On the Galois side, r is the dimension of the representation. On
the automorphic side, the group is GLr, but the representations are often huge,
infinite-dimensional.

Some progress toward this conjecture has been made, but we are still very far
from proving it. This conjecture is very deep, as it relates two completely different
kinds of objects. The Galois group stems from consideration of algebraic equations,
while automorphic representations belong to functional analysis.

Another remark is that in both Galois theory and Langlands’ correspondence,
the Galois group intervenes via actions: actions on finite sets in Galois theory and
linear actions in Langlands’ correspondence. The two types of actions are directly
related by linearization, which produces a linear Galois representation from every
finite set endowed with a Galois action.

The Langlands’ correspondence stated above is only between representations
considered as objects, but it says nothing about the structures of the categories of
representations. So what about tensor products of representations. What about
relations between representations? At the present moment we don’t even have any
conjectural partial answer to these questions.

4 Algebraic geometry and motives

We have seen that an algebraic equation in several variables defines a geometric
object. More generally, the geometric object defined by a system of such equations
is called an algebraic variety. We are very far from having an analogue of Galois
theory for varieties over Q.
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Grothendieck’s theory of `-adic cohomology allows us to go one way. Let ` be a
prime number. Given an algebraic variety V over Q, its i-th `-adic cohomology group
H i(V ⊗Q Q,Q`) is a finite-dimensional Q`-vector space, endowed with a continuous
action of the Galois group ΓQ. The images of such representations are not finite
in general. The Langlands program predicts that such representations should also
correspond to automorphism representations.

How to come back from cohomology to algebraic geometry? This is the subject
of the conjectural theory of motives. There are many conjectures related to motives,
such as the Tate conjecture and the Hodge conjecture. Of course one cannot expect
to completely recover a variety from its cohomology. The goal of the theory of
motives is to understand exactly what information is preserved when going from
geometry to cohomology.
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