Errata and Addenda to "Odds and ends on finite group actions and traces"

Luc Illusie^{*} Weizhe Zheng[†]

Abstract

We wish to correct a few typographical errors in [3], complete an argument in [3, Proposition 2.7], and take the opportunity to point out a few additional consequences of [3] on fixed-point sets of finite group actions and complement some results of Esnault-Nicaise [2] in the case of affine spaces.

Corrections to [3]:

- Proposition 2.7: Some details are missing in the proof. A G-stable open cover exists only when the action of G is admissible. To reduce to this case, we proceed by induction on the dimension, which allows us to shrink U to any dense open subset. It then suffices to apply Chow's lemma.
- Setup 3.1, second paragraph: Read $D_c^b(\mathcal{X}, E)$ for $D_c^b(X, E)$.
- Proof of Theorem 3.2, line 4: Read H for G.
- Proposition 5.6: Read \mathcal{F} for F.
- Proposition 7.1: The first sentence of the proof is superfluous.
- Above Corollary 7.11: A tilde is missing in the definition of "mod ℓ cohomology N-sphere". The condition should be $R\tilde{\Gamma}(X, \mathbb{F}_{\ell}) \simeq \mathbb{F}_{\ell}[-N]$.

In the context of mod ℓ étale cohomology we proved in [3, Section 7] results of Smith theory type for fixed points of finite ℓ -group actions. In this note we examine variants for actions of other types of finite groups and complement some results of Esnault-Nicaise [2] in the case of standard affine spaces.

Proposition 1. Let k be an algebraically closed field of characteristic p, X be an algebraic space separated and of finite type over k, equipped with an action of a finite group G whose order is not divisible by p. Assume that X is mod ℓ acyclic and G is an extension by an ℓ -group H of an extension by a cyclic group C of an ℓ' -group, for some primes $\ell \neq p$ and ℓ' . Then $\chi(X^G) \equiv 1 \pmod{\ell'}$. In particular, X^G is nonempty.

^{*}Université de Paris-Sud, Département de mathématique, Bât. 425, 91405 Orsay Cedex, France; email: Luc.Illusie@math.u-psud.fr

[†]Morningside Center of Mathematics, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing 100190, China; email: wzheng@math.ac.cn

Proof. By [3, Theorem 7.3], X^H is mod ℓ acyclic. In particular, $H^0(X^H, \mathbb{Q}_\ell) = \mathbb{Q}_\ell$ and $H^i(X^H, \mathbb{Q}_\ell) = 0$ for i > 0. Thus, by [3, Corollary 5.11], $\chi((X^H)^C) = 1$. Therefore, by [3, Proposition 7.1], $\chi(X^G) \equiv 1 \pmod{\ell'}$.

Lemma 2. Let F be a perfect field, C be a connected smooth curve over F such that $\chi(C_{\bar{F}}) = 1$, where \bar{F} is an algebraic closure of F. Then C is an affine line over F.

Proof. Let X be a smooth compactification of $C_{\bar{F}}$. Then

$$1 = \chi(C_{\bar{F}}) = 2 - 2g - n$$

where g is the genus of X and $n = \#(X - C_{\bar{F}})$. Thus g = 0 and n = 1. It follows that C is an affine line over F.

Lemma 3. Let F be a field of characteristic p, X be a smooth algebraic space over F endowed with an action of a finite group G of order not divisible by p. Then X^G is smooth.

Proof. The case where X is a scheme is well-known (see [1, 3.4] for a generalization). We may assume F is separably closed. As in the case of schemes, the lemma follows from the linearizability of the action of G on $\hat{\mathcal{O}}_{X,x}$ for every closed point x of X^G [1, 3.3].

Proposition 4. Let F be a perfect field of characteristic p, X be a smooth algebraic space separated and of finite type over F of dimension $\leq 2^{1}$, equipped with an action of a finite solvable group G of order n not divisible by p. Assume that $X_{\overline{F}}$ is mod ℓ acyclic for every prime number ℓ dividing n, where \overline{F} is an algebraic closure of F. Then $X^{G} = X$ or $X^{G} \simeq \mathbb{A}^{1}_{F}$ or $X^{G} \simeq \mathbb{A}^{0}_{F}$.

Proof. By induction on n, we may assume that $G \neq \{1\}$ is an ℓ -group. In this case, by [3, Theorem 7.3], $X_{\bar{F}}^G$ is mod ℓ acyclic. Moreover, by Lemma 3, X^G is smooth. There are three cases.

(a) dim $X^G = 2$. This implies $X^G = X$ because X is connected by the mod ℓ acyclicity assumption, hence integral.

(b) dim $X^G = 1$. This implies $X^G \simeq \mathbb{A}^1_F$ by Lemma 2.

(c) dim
$$X^G = 0$$
. This implies $X^G \simeq \mathbb{A}^0_F$.

For $X = \mathbb{A}_F^2$, the above result can be strengthened as follows.

Proposition 5. Let F be a field of characteristic p, G be a finite group of order not divisible by p. For every action of G on $X = \mathbb{A}_F^2$, $X^G \simeq \mathbb{A}_F^m$ for some $0 \le m \le 2$.

For solvable G, this is [2, Corollary 5.14]. Similarly to [2, Question 7.1], we consider the subgroup $\operatorname{Aff}_n(F) < \operatorname{Aut}(\mathbb{A}_F^n)$ of affine automorphisms and the subgroup

$$J_n(F) = \{ (P_1, \dots, P_n) \in Aut(\mathbb{A}_F^n) \mid P_i \in F[X_1, \dots, X_i], 1 \le i \le n \}$$

of triangular automorphisms. Note that $P_i = a_i X_i + Q_i$, where $a_i \in F^{\times}$ and $Q_i \in F[X_1, \ldots, X_{i-1}]$. For $n \ge 1$, we have a split short exact sequence of groups

 $0 \to F[X_1, \dots, X_{n-1}] \xrightarrow{\alpha} J_n(F) \xrightarrow{\beta} F^{\times} \times J_{n-1}(F) \to 1,$

¹It is well-known that such an algebraic space is a quasi-projective scheme over F.

where $\alpha(P) = (X_1, \ldots, X_{n-1}, X_n + P)$ and $\beta(P_1, \ldots, P_n) = (a_n, (P_1, \ldots, P_{n-1}))$, the homomorphism $F^{\times} \times J_{n-1}(F) \to J_n(F)$ sending $(a, (P_1, \ldots, P_{n-1}))$ to $(P_1, \ldots, P_{n-1}, aX_n)$ giving a splitting. In particular, $J_n(F)$ is solvable.

Lemma 6. Let F be a field of characteristic p, G be a finite subgroup of $\operatorname{Aff}_n(F)$ or $J_n(F)$, of order not divisible by p. Then $(\mathbb{A}_F^n)^G \simeq \mathbb{A}_F^m$ for some $0 \le m \le n$.

Proof. Since $J_n(F)$ is solvable, if G factors through $J_n(F)$, we proceed by induction to reduce to the case where G is cyclic. By [4, Theorem 2.2], G is then conjugate in $J_n(F)$ to a subgroup of $\operatorname{Aff}_n(F) \cap J_n(F)$. Therefore, in all cases, we may assume that G is a subgroup of $\operatorname{Aff}_n(F)$. In this case, for any point x of $\mathbb{A}^n(F)$,

$$\frac{1}{\#G}\sum_{g\in G} xg$$

belongs to $(\mathbb{A}^n)^G(F)$, so that G is conjugate to a subgroup of $\operatorname{GL}_n(F)$. The assertion is then obvious.

Proof of Proposition 5. By the theorem of Jung and van der Kulk [7], $\operatorname{Aut}(\mathbb{A}_F^2)$ is the amalgamated product of $\operatorname{Aff}_2(F)$ and $J_2(F)$ over $\operatorname{Aff}_2(F) \cap J_2(F)$. Thus, by [6, cor. du théorème 8, p. 54], the image of G is conjugate to a subgroup of $\operatorname{Aff}_2(F)$ or $J_2(F)$. Therefore, the assertion follows from Lemma 6.

Remark 7. It follows from the above proof and the classification of finite subgroups of $PGL_2(F)$ of order not divisible by p [5, Proposition 16, page 281] that, in the situation of Proposition 5, the possible composition factors of the image of G in Aut(X) are cyclic groups of prime order and the alternating group A_5 .

Proposition 8. Let k be an algebraically closed field of characteristic p, X be a smooth algebraic space separated and of finite type over k of dimension 3, equipped with an action of a finite nilpotent group G of order n > 1 not divisible by p. Assume that X is mod ℓ acyclic for every prime number ℓ dividing n. Then $\chi(X^G) = 1$. In particular, X^G is nonempty.

Proof. We decompose G as $\prod_{\ell} G_{\ell}$, where G_{ℓ} is a ℓ -group. Let $d_{\ell} = \dim X^{G_{\ell}}$. There are two cases.

(a) $d_{\ell} \leq 1$ for some ℓ . By [3, Theorem 7.3], $X^{G_{\ell}}$ is mod ℓ acyclic. As in the proof of Proposition 4, by Lemmas 2 and 3, $X^{G_{\ell}}$ is either an affine line or a point. Applying Proposition 4 to $X^{G_{\ell}}$, we see that X^{G} is either an affine line or a point.

(b) $d_{\ell} \geq 2$ for all ℓ . For those ℓ such that $d_{\ell} = 2$, choose a cyclic subgroup H_{ℓ} of G_{ℓ} acting nontrivially on X. By [3, Theorem 7.3] and Lemma 3, $X^{H_{\ell}}$ is connected and smooth, hence integral. Moreover, dim $X^{H_{\ell}} \leq 2$, as dim X = 3, and X is connected by the mod ℓ acyclicity assumption, hence integral. Thus $X^{G_{\ell}} = X^{H_{\ell}}$. It follows that $X^G = X^H$, where $H = \prod_{d_{\ell}=2} H_{\ell}$ is a cyclic group. Therefore, by [3, Corollary 5.11], $\chi(X^G) = \chi(X^H) = 1$.

Funding

This work was supported by China's Recruitment Program of Global Experts [to W.Z.]; and National Center for Mathematics and Interdisciplinary Sciences, Chinese Academy of Sciences [to W.Z.].

Acknowledgments

Our debt to [2, Sections 5.3 and 7] is obvious. The first author thanks Ofer Gabber and Michael Temkin for conversations on algebraic spaces. The second author thanks Shou-Wu Zhang for inspiring questions and Zhi Jiang and Yichao Tian for bibliographical assistance. The second author was partially supported by Hua Loo-Keng Key Laboratory of Mathematics, Chinese Academy of Sciences.

References

- B. Edixhoven. Néron models and tame ramification. Compositio Math. 81 (1992), 291–306.
- [2] H. Esnault and J. Nicaise. Finite group actions, rational fixed points and weak Néron models. Pure Appl. Math. Q. 7 (2011), 1209–1240. 1, 2, 4
- [3] L. Illusie and W. Zheng. Odds and ends on finite group actions and traces. Int. Math. Res. Not. 2013, 1–62, doi:10.1093/imrn/rnr226. 1, 2, 3
- [4] N. Ivanenko. Some classes of linearizable polynomial maps. J. Pure Appl. Algebra 126 (1998), 223–232, doi:10.1016/S0022-4049(96)00134-X.
- [5] J.-P. Serre. Propriétés galoisiennes des points d'ordre fini des courbes elliptiques. Invent. Math. 15 (1972), 259–331.
- [6] J.-P. Serre. Arbres, amalgames, SL₂. Astérisque 46 (1977), troisième édition corrigée, 1983. 3
- [7] W. van der Kulk. On polynomial rings in two variables. Nieuw Arch. Wiskunde (3) 1 (1953), 33–41.