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Chapter 1

Categories and functors

Very rough historical sketch
Homological algebra studies derived functors between

• categories of modules (since the 1940s, culminating in the 1956 book by Cartan
and Eilenberg [CE]);

• abelian categories (Grothendieck’s 1957 Tōhoku article [G]); and
• derived categories (Verdier’s 1963 notes [V1] and 1967 thesis of doctorat d’État

[V2] following ideas of Grothendieck).

1.1 Categories
Definition 1.1.1. A category C consists of a collection of objects Ob(C), a collection
of morphisms HomC(X, Y ) (or simply Hom(X, Y ) when no confusion arises) for every
pair of objects (X, Y ) of C, and a composition law, namely a map

Hom(X, Y )× Hom(Y, Z)→ Hom(X,Z),

denoted by (f, g) 7→ gf (or g ◦ f), for every triple of objects (X, Y, Z) of C. These
data are subject to the following axioms:

• (associativity) Given morphisms X f−→ Y
g−→ Z

h−→ W , we have h(gf) = (hg)f .
• (unit law) For every object X of C, there exists an identity morphism idX ∈

End(X) := Hom(X,X) such that f idX = f , idXg = g for all f ∈ Hom(X, Y ),
g ∈ Hom(Y,X).

The morphism idX is clearly unique. A morphism X → X is called an endomor-
phism.

Remark 1.1.2. For convenience we usually assume that the Hom sets are disjoint.
In other words, every morphism f ∈ Hom(X, Y ) has a unique source X and a unique
target Y .

Remark 1.1.3. Russell’s paradox shows that not every collection is a set. Indeed,
the collection R of sets S such that S ̸∈ S cannot be a set, for otherwise R ∈ R if and
only if R ̸∈ R. To avoid the paradox, the conventional ZFC (Zermelo–Fraenkel +
axiom of choice) set theory does not allow the existence of a set containing all sets or
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2 CHAPTER 1. CATEGORIES AND FUNCTORS

unrestricted comprehension. In category theory, however, it is convenient to intro-
duce a collection of all sets in some sense. In NBG (von Neumann–Bernays–Gödel)
set theory, which is an extension of ZFC set theory, one distinguishes between sets
and proper classes. Another approach, which we adopt, is to assume the existence
of an uncountable Grothendieck universe U .1 Elements of U are called small sets.
The following table loosely summarizes the basic terminological differences of the
two approaches.

NBG class set proper class
ZFC + U set small set large set

We will mostly be interested in categories whose Hom sets are small, which are
sometimes called locally small categories. A category C is called small if it is locally
small and Ob(C) is small.

Example 1.1.4.
(1) Let R be a ring.

category objects morphisms
Set small sets maps
Top small topological spaces continuous maps
Grp small groups homomorphisms of groups
Ring small rings homomorphisms of rings
R-Mod (e.g. Ab) small (left) R-modules homomorphisms of R-modules

In all of the above examples, composition is given by composition of maps.
(2) Any set S can be regarded as a category by

Hom(x, y) =
{∗} x = y,

∅ otherwise.

Such a category is said to be discrete.
(3) More generally, any partially ordered set (S,≤) can be regarded as a category

by

Hom(x, y) =
{∗} x ≤ y,

∅ otherwise.

(4) Any monoid M can be regarded as a category BM with one object ∗ and
End(∗) = M . Conversely, given any object X of a category C, End(X) is a
monoid.

Definition 1.1.5. A morphism f : X → Y in C is called an isomorphism if there
exists a morphism g : Y → X such that gf = idX and fg = idY . The morphism g
is unique and is called the inverse of f , denoted by f−1.

1A Grothendieck universe U is a set satisfying the following conditions: y ∈ x ∈ U implies
y ∈ U ; x, y ∈ U implies {x, y} ∈ U ; x ∈ U implies P (x) ∈ U where P (x) is the power set of
x; xi ∈ U , i ∈ I ∈ U implies

⋃
i∈I xi ∈ U . TG (Tarski–Grothendieck) set theory is obtained

from ZFC by adding Tarski’s axiom, which states that for every set x, there exists a Grothendieck
universe U ∋ x.
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An isomorphism X → X is called an automorphism. We let Aut(X) ⊆ End(X)
denote the subset consisting of automorphisms.
Remark 1.1.6. The identity map idX is an isomorphism. The collection of isomor-
phisms is stable under composition. In particular, Aut(X) is a group.

A category of which where every morphism is an isomorphism is called a groupoid.
For example, given a group G, the category BG defined in Example 1.1.4 (3) is a
groupoid.
Definition 1.1.7. Let f : X → Y be a morphism in a category C. We say that f is a
monomorphism if for every pair of morphisms (g1, g2) : W ⇒ X satisfying fg1 = fg2,
we have g1 = g2. We say that f is an epimorphism if for every pair of morphisms
(h1, h2) : Y ⇒ Z satisfying h1f = h2f , we have h1 = h2. In other words, f is a
monomorphism if and only if the map Hom(W,X)→ Hom(W,Y ) carrying g to fg
is an injection; f is an epimorphism if and only if the map Hom(Y, Z)→ Hom(X,Z)
carrying h to hf is an injection.

We sometimes represent monomorphisms by ↪→ and epimorphisms by ↠.
Remark 1.1.8. One can show that a morphism in Set, Top, Grp, or R-Mod is a
monomorphism (resp. epimorphism) if and only if it is an injection (resp. surjection).
See the Exercises. On the other hand, the inclusion map Z→ Q is an epimorphism
in Ring that is not a surjection. One can show that a morphism f : X → Y in the
category HausTop of small Hausdorff topological spaces is an epimorphism if and
only if the image f(X) is dense in Y .
Remark 1.1.9. An isomorphism is necessarily a monomorphism and an epimor-
phism. The converse does not hold in general. For example, the inclusion map
Z→ Q in Ring is a monomorphism and an epimorphism, but not an isomorphism.
Here is another example. In Top, the continuous map Rdisc → R carrying x to x,
where Rdisc denotes the set R equipped with the discrete topology, is a monomor-
phism and an epimorphism, but not an isomorphism.

We leave the proof of the following lemma as an exercise.

Lemma 1.1.10. Consider morphisms X f−→ Y
g−→ Z. Then

(1) If f and g are monomorphisms, then gf is a monomorphism.
(2) If f and g are epimorphisms, then gf is an epimorphism.
(3) If gf is a monomorphism, then f is a monomorphism.
(4) If gf if an epimorphism, then g is an epimorphism.
(5) If gf is an isomorphism and either f is an epimorphism or g is a monomor-

phism, then g and f are isomorphisms.
Remark 1.1.11. By Remark 1.1.6 and Lemma 1.1.10 (5), the collection of iso-
morphisms satisfies the two-out-of-three property: For any composable pair of mor-
phisms X f−→ Y

g−→ Z, if two of the three morphisms f , g, and gf are isomorphisms,
then so is the third one.
Definition 1.1.12. The opposite category Cop of a category C is defined by Ob(Cop) =
Ob(C) and HomCop(X, Y ) = HomC(Y,X).

A morphism f of a category C is a monomorphism in C if and only if it is an
epimorphism in Cop.
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1.2 Functors

Functors
Definition 1.2.1. Let C andD be categories. A functor F : C → D consists of a map
Ob(C) → Ob(D) and, for every pair of objects (X, Y ) of C, a map HomC(X, Y ) →
HomD(FX,FY ), compatible with composition and identity: F (idX) = idFX for all
X ∈ Ob(C) and F (gf) = F (g)F (f) for all morphisms X f−→ Y

g−→ Z.

Remark 1.2.2. Given functors F : C → D and G : D → E , we have the composite
functor GF : C → E . For any category C, we have the identity functor idC. We can
thus organize small categories and functors into a category Cat.

Example 1.2.3. (1) We have forgetful functors Top→ Set and

R-Mod→ Ab→ Grp→ Set.

(2) We have a functor Set → R-Mod carrying a set S to the free R-module
R(S) = ⊕

s∈S Rs.
(3) We have a functor Hn : Top→ Ab carrying a topological space X to its n-th

singular homology group Hsing
n (X).

(4) For any object X in a category C with small Hom sets, we have functors
Hom(X,−) : C → Set and hC(X) = Hom(−, X) : Cop → Set.

Definition 1.2.4. A contravariant functor from C to D is a functor Cop → D.

Definition 1.2.5. Let (Ci)i∈I be a family of categories. The product category C =∏
i∈I Ci is defined by Ob(C) = ∏

i∈I Ob(Ci) and HomC((Xi), (Yi)) = ∏
i∈I HomCi

(Xi, Yi).

A functor C × D → E is sometimes called a bifunctor.

Example 1.2.6. (1) For any category C with small Hom sets, we have a functor
Hom(−,−) : Cop × C → Set.

(2) Let R, S, and T be rings. We have functors

−⊗S − : (R, S)-Mod× (S, T )-Mod→ (R, T )-Mod,
HomR-Mod(−,−) : ((R, S)-Mod)op × (R, T )-Mod→ (S, T )-Mod,
HomMod-T (−,−) : ((S, T )-Mod)op × (R, T )-Mod→ (R, S)-Mod.

Here (R, S)-Mod denotes the category of small (R, S)-bimodules, which can
be identified with (R⊗Z S

op)-Mod.

Natural transformations
Definition 1.2.7. Let F,G : C → D be functors. A natural transformation α : F →
G consists of morphisms αX : FX → GX in D for all objects X of C, such that for
every morphism f : X → Y of C, the following diagram commutes

FX
Ff //

αX

��

FY

αY

��
GX

Gf // GY.
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We denote the set of natural transformations F → G by Nat(F,G).

Example 1.2.8. Let U : R-Mod → Set be the forgetful functor carrying an R-
module to its underlying set. Let F : Set → R-Mod be the free module functor.
Then the injection S → R(S) carrying s to 1 · s defines a natural transformation
α : idSet → UF .

Remark 1.2.9. Given functors F,G,H : C → D and natural transformations α : F →
G and β : G → H, we have the (vertically) composite natural transformation
βα : F → H. Functors C → D and natural transformations form a category
Fun(C,D). Isomorphisms in this category are called natural isomorphisms2. A nat-
ural transformation α is a natural isomorphism if and only if αX is an isomorphism
for every object X of C.

There is also a horizontal composition of natural transformations: Given a nat-
ural transformation α : F → G between functors C → D and a natural transfor-
mation α′ : F ′ → G′ between functors D → E , we have α′α : F ′F → G′G between
functors C → E . This composition satisfies various compatibilities. Small cate-
gories, functors, and natural transformations, together with horizontal and vertical
compositions, form a “2-category”.

A functor F : C → D is called an isomorphism of categories if there exists a
functor G : D → C such that GF = idC and FG = idD. A more useful notion is the
following.

Definition 1.2.10. An equivalence of categories is a functor F : C → D such that
there exist a functorG : D → C and natural isomorphisms idC ≃ GF and FG ≃ idD.3
The functors F and G are then called quasi-inverses of each other.

Quasi-inverses of a functor F are unique up to natural isomorphisms.

Example 1.2.11. Let X be a topological space. The fundamental groupoid Π1(X)
of X is defined as follows: The objects are points of X and a morphism from x to
y is a homotopy equivalence class of paths from x to y in X. Composition is given
by concatenation of paths.

If X is path-connected and simply connected, then Π1(X) is equivalent to {∗},
but not isomorphic to {∗} unless X is a singleton.

Remark 1.2.12. If F → F ′ is a natural isomorphism of functors, then F is an
equivalence of categories if and only if F ′ is. Given a composable pair of functors
C F−→ D G−→ E , if two of the three functors F , G, and GF are equivalences of
categories, then so is the third one. For example, if F is an equivalence and K is a
quasi-inverse of GF , then FK is a quasi-inverse of G.

2Some authors call them natural equivalences.
3Some authors write ≃ for equivalences and ∼= for isomorphisms. We will write ≃ for isomor-

phisms and state equivalences verbally.
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Faithful functors, full functors
Definition 1.2.13. A functor F : C → D is faithful (resp. full, resp. fully faithful)
if the map HomC(X, Y ) → HomD(FX,FY ) is an injection (resp. surjection, resp.
bijection) for all X, Y ∈ Ob(C).

Lemma 1.2.14. Let F : C → D is fully faithful functor.
(1) Let f : X → Y be a morphism of C such that Ff is an isomorphism. Then f

is an isomorphism.
(2) Let X and Y be objects of C such that FX ≃ FY . Then X ≃ Y .

Proof. (1) Let g′ be an inverse of Ff and let g : Y → X be such that Fg = g′. Then
g is an inverse of f .

(2) Let f ′ : FX → FY be an isomorphism and let f : X → Y be such that
Ff = f ′. By (1), f is an isomorphism.

Definition 1.2.15. Let C be a category. A subcategory of C is a category C0 such
that Ob(C0) ⊆ Ob(C), HomC0(X, Y ) ⊆ HomC(X, Y ) for all X, Y ∈ Ob(C0), and the
inclusion C0 → C is a functor. The inclusion functor is necessarily faithful. A full
subcategory is a subcategory such that the inclusion functor is fully faithful.

To specify a full subcategory C0 of C, it suffices to say which objects belong to
C0. One speaks of the full subcategory spanned by (or consisting of) its objects.

Example 1.2.16. The category Ab is a full subcategory of Grp. The forgetful
functor Grp→ Set is faithful, but not fully faithful.

Definition 1.2.17. A functor F : C → D is essentially surjective if for every object
Y of D, there exists an object X of C and an isomorphism FX ≃ Y .

Proposition 1.2.18. A functor F : C → D is an equivalence of categories if and
only if it is fully faithful and essentially surjective.

Proof. Let F be an equivalence of categories and let G be a quasi-inverse. Since
FG ≃ id, F is essentially surjective. Since GF ≃ id, G is essentially surjective. For
objects X,X ′ of C, since the composition

(GF )X,X′ : HomC(X,X ′)
FX,X′
−−−→ HomD(FX,FX ′)

GF X,F X′
−−−−−→ HomC(GFX,GFX ′)

is an isomorphism, FX,X′ is an injection. Similarly, for objects Y, Y ′ of D, FGY,GY ′

is a surjection. Since G is essentially surjective, it follows that FX,X′ is a surjection.
For the converse, we will prove the following more explicit version.

Proposition 1.2.19. Let F : C → D be a fully faithful functor. For each object Y
of D, let XY be an object of C and ϵY : FXY → Y an isomorphism. Then there
exists a unique quasi-inverse G : D → C of F such that GY = XY for every object
Y of D and that ϵ : FG→ idD is a natural isomorphism.
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Proof. By the full faithfulness of F , for any morphism g : Y → Y ′ in D, there exists
a unique morphism Gg : GY → GY ′ rendering the following square commutative:

(1.2.1)
FGY Y

FGY ′ Y ′.

ϵY

FGg g

ϵY ′

This proves the uniqueness of G. For the existence, it is easy to check that the G
defined above is a functor. Clearly ϵ is an natural isomorphism. For every object X
of C, ϵFX : FGFX → FX equals FηX for a unique morphism ηX : GFX → X, which
is an isomorphism by Lemma 1.2.14. From (1.2.1), one deduces the commutative
square

GFX X

GFX ′ X ′

ηX

GFf f

ηX′

for every morphism f : X → X ′ in C. Thus η : GF → idC is a natural isomorphism
and G is a quasi-inverse of F .

Corollary 1.2.20. Let F : C → D be a fully faithful functor. Then F induces an
equivalence of categories C → D0, where D0 is the full subcategory of D spanned by
the image of F .

Corollary 1.2.21. For any category C, there exists a full subcategory C0 such that
the inclusion functor C0 → C is an equivalence of categories and isomorphic objects
in C0 are equal.

Proof. By the axiom of choice, we can pick a representative in each isomorphism
class of objects C. Let C0 be the full subcategory of C spanned by the representatives.
The inclusion functor C0 → C is fully faithful and essentially surjective, and hence
an equivalence of categories by Proposition 1.2.18.

Yoneda’s lemma and representable functors
Let C be a category with small Hom sets. For every object X of C, consider the
functor hC(X) = HomC(−, X) : Cop → Set.

Lemma 1.2.22 (Yoneda). For every functor F : Cop → Set, the map

ϕ : Nat(hC(X), F )→ F (X)

given by ϕ(α) = αX(idX) is a bijection.

We leave it as an exercise to state a dual of Yoneda’s lemma.

Proof. We construct the inverse ψ : F (X)→ Nat(hC(X), F ) by ψ(x)Y (f) = F (f)(x)
for f : Y → X. We have (ϕψ)(x) = ψ(x)X(idX) = F (idX)(x) = x. Moreover,
(ψϕ)(α)Y (f) = F (f)(ϕ(α)) = F (f)(αX(idX)) = αY (hC(f)(idX)) = αY (f).
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Note that hC(X) is functorial in X, in the sense that we have a functor hC : C →
Fun(Cop,Set).

Corollary 1.2.23. The functor hC is fully faithful.

This functor is called the Yoneda embedding.

Proof. Indeed, the map HomC(X, Y ) → Nat(hC(X), hC(Y )) given by hC coincides
with the bijection ψ constructed in the proof of the lemma for F = hC(Y ).

Applying Lemma 1.2.14, we get the following.

Corollary 1.2.24. (1) Let f : X → Y be a morphism such that hC(f) : hC(X)→
hC(Y ) is a natural isomorphism. Then f is an isomorphism.

(2) Let X, Y be objects such that hC(X) ≃ hC(Y ). Then X ≃ Y .

Definition 1.2.25. We say that a functor F : Cop → Set is represented by an
object X of C if there exists a natural isomorphism F ≃ hC(X). We say that F is
representable if it is represented by some object X of C.

By Corollary 1.2.23 and Proposition 1.2.18, hC induces an equivalence of cat-
egories from C to the full subcategory of Fun(Cop,Set) spanned by representable
functors.

1.3 Universal constructions

Initial objects, final objects, zero objects
Definition 1.3.1. Let C be a category. An object X of C is called an initial object
if, for every object Y of C, there exists precisely one morphism X → Y . An object
Y of C is called a final (or terminal) object if, for every object X of C, there exists
precisely one morphism X → Y .

Remark 1.3.2. An initial object of C is a final object of Cop and a final object of C
is an initial object of Cop.

Proposition 1.3.3. If X1 and X2 are initial objects of C, then there exists a unique
isomorphism between them. If Y1 and Y2 are final objects of C, then there exists a
unique isomorphism between them.

Proof. By definition there exists a unique morphism f : X1 → X2 and a unique
morphism f ′ : X2 → X1. By the uniqueness of morphisms X1 → X1, we have
f ′f = idX1 , and similarly ff ′ = idX2 . Thus f is an isomorphism. The case of final
objects follows by duality.

Example 1.3.4. Let R be a ring.
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category initial object final object
Set ∅ {∗}Top
Grp {1} {1}
R-Mod (e.g. Ab) {0} {0}
Ringnu {0} {0}
Ring Z {0}
Field none none
(S,≤) least element (if any) greatest element (if any)

Here Ringnu denotes the category of small nonunital rings (also known as rngs).

Definition 1.3.5. If an object is both initial and final, it is called a zero object.

Remark 1.3.6. If C admits a zero object, then for every pair of objects X, Y , there
exists a unique morphism X → Y , called the zero morphism, that factors through
a zero object. Zero objects and zero morphisms are often denoted by 0.

Products, coproducts
Definition 1.3.7. Let (Xi)i∈I be a family of objects in C. A product of (Xi)i∈I is
an object P of C equipped with morphisms pi : P → Xi, i ∈ I, called projections,
satisfying the following universal property: for each object Q of C equipped with
morphisms qi : Q → Xi, i ∈ I, there exists a unique morphism q : Q → P such
that qi = piq. A coproduct of (Xi)i∈I is an object U of C equipped with morphisms
ui : Xi → U , i ∈ I, satisfying the following universal property: for each object V
of C equipped with morphisms vi : Xi → V , i ∈ I, there exists a unique morphism
v : U → V such that vi = vui.

Remark 1.3.8. A product in C is a coproduct in Cop and a coproduct in C is a
product in Cop.

Remark 1.3.9. For I = ∅, a product is a final object and a coproduct is an initial
object.

Proposition 1.3.10. The product of (Xi)i∈I , if it exists, is unique up to unique
isomorphism. More precisely, if (P, (pi)) and (P ′, (p′

i)) are products of (Xi), then
there exists a unique isomorphism f : P → P ′ such that pi = fp′

i for all i ∈ I.

Proof. Indeed, by the universal property of product, we have a unique morphism
f : P → P ′ such that pi = fp′

i and a unique isomorphism f ′ : P ′ → P such that
p′
i = f ′pi for all i ∈ I. It follows that pi = f ′fpi for all i ∈ I, so that f ′f = idP by

the universal property (applied to Q = P ). Similarly, ff ′ = idP ′ . Therefore, f is an
isomorphism.

Notation 1.3.11. We let ∏i∈I Xi denote the underlying object of a product of
(Xi)i∈I if it exists. We let ∐i∈I Xi denote the underlying object of a coproduct of
(Xi)i∈I if it exists.
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We speak of finite (resp. small, etc.) products/coproducts if the indexing set I
is finite (resp. small, etc.).

Example 1.3.12. Let R be a ring.

category small coproduct small product
Set disjoint union usual productTop
R-Mod (e.g. Ab) direct sum

In the case of Top, the product P = ∏
i∈I Xi is the set-theoretic product equipped

with the coarsest topology (sometimes called the Tychonoff topology) such that the
projections P → Xi are continuous. The product U = ∐

i∈I Xi is the disjoint union
equipped with the finest topology such that the inclusions Xi → U are continuous.

In the case of R-Mod, recall that the direct sum ⊕
i∈IMi is the R-submodule of∏

i∈IMi consisting of elements (mi)i∈I such that mi = 0 for all but finitely many i.
In the categories Grp, Ring, CRing, small products are usual products. Here

CRing is the category of small commutative rings. In CRing, the coproduct of a
pair of rings is tensor product.

Example 1.3.13. In the category associated to a partially ordered set (S,≤), prod-
uct means infimum and coproduct means supremum. In particular, if ≤ is a total
order, then (S,≤) admits products of pairs of objects and coproducts of pairs of
objects.

Remark 1.3.14. Let (Xi)i∈I be a family of objects of C and let I = ∐
j∈J Ij be a

partition. If Pj = ∏
i∈Ij

Xi exists for each j, and P = ∏
j∈J Pj exists, then P is a

product of (Xi)i∈I . In particular, a category admitting products of pairs of objects
admits finite nonempty products.

Remark 1.3.15. The universal property for product can be summarized as a bi-
jection

HomC(Q,
∏
i∈I
Xi) ≃

∏
i∈I

HomC(Q,Xi).

We defined ∏i∈I Xi by spelling out the functor Hom(−,∏i∈I Xi) it represents.

Over-categories and under-categories
Let C be a category and let Y be an object of C. The category C/Y of objects of
C over Y is defined as follows. An object of C/Y is a pair (X, f), where X is an
object of C and f : X → Y is a morphism of C. A morphism (X, f)→ (X ′, f ′) is a
morphism h : X → X ′ such that f = f ′h, i.e. the following diagram commutes

X

f   

h // X ′

f ′

��
Y.

Composition is defined in an obvious way.
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Dually, the category CY/ of objects of C under Y is defined as follows. An object
of CY/ is a pair (X, f), where X is an object of C and f : Y → X is a morphism of
C. A morphism (X, f)→ (X ′, f ′) is a morphism h : X → X ′ such that hf = f ′. We
have an isomorphism of categories (C/Y )op ≃ (Cop)Y/.

More generally, let F : I → C be a functor. The category C/F of objects of C over
F (or cones to the base F ) is defined as follows. An object of C/F is an object X of
C equipped with morphisms pi : X → F (i), i ∈ Ob(I) such that pj = F (a)pi for all
morphisms a : i → j. A morphism (X, (pi)) → (Y, (qi)) is a morphism f : X → Y
such that pif = qi.

Dually, the category CF/ of objects of C under F (or cones from the base F ) is
defined as follows. An object of CF/ is an object X of C equipped with morphisms
pi : F (i) → X, i ∈ Ob(I) such that F (a)pj = pi for all morphisms a : i → j. A
morphism (X, (pi)) → (Y, (qi)) is a morphism f : X → Y such that fpi = qi. We
have an isomorphism of categories (C/F )op ≃ (Cop)F op/, where F op : Iop → Cop.

Limits, colimits
Given a set I, we may regard a family of objects (Xi)i∈I of C as a functor F : I → C.
Then a product of (Xi)i∈I is the same as a final object of C/F and a coproduct is
the same as an initial object of CF/. More generally, we have the following notion.

Definition 1.3.16. Let I and C be categories and let F : I → C be a functor. A
limit (also called projective limit) of F is a final object of C/F and a colimit (also
called inductive limit) of F is an initial object of CF/.

We speak of finite (resp. small, etc.) limits/colimits if the indexing category I is
finite (resp. small, etc.).

Limits and colimits are unique up to unique isomorphisms.

Remark 1.3.17. Let us spell out the definition of limit. A limit of F is an object
L of C equipped with morphisms pi : L → F (i), i ∈ Ob(I) such that pj = F (f)pi
for all morphisms f : i → j and satisfying the following universal property: For
every object M of C equipped with morphisms qi : M → F (i), i ∈ Ob(I) satisfying
qj = F (f)qi for all morphisms f : i→ j, there exists a unique morphism a : M → L
such that qi = pia for all i. We leave it as an exercise to spell out the definition of
colimit.

Notation 1.3.18. We let limF or limi∈I F (i) denote the underlying object of a
limit of F if it exists. We let colimF or colimi∈I F (i) denote the underlying object
of a colimit of F if it exists. (Other notation: lim←− for limit and lim−→ for colimit.)

Example 1.3.19. As already remarked, for I discrete, a limit indexed by I is a
product and a colimit indexed by I is a coproduct.

Example 1.3.20. Let I = (•⇒ •). Here each • denotes an object and each arrow
denotes a morphism that is not an identity. A functor F : I → C is represented by a
pair of morphisms f, g : X → Y in C with the same source and the same target. A
limit of F is called an equalizer of the pair and the underlying object is denoted by
eq(f, g). Let us spell out the definition. An equalizer of (f, g) is an object E of C
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equipped with a morphism p : E → X such that fp = gp and satisfying the following
universal property: For every object E ′ of C equipped with a morphism q : E ′ → X
of C such that pq = gq, there exists a unique morphism a : E ′ → E such that
q = pa. A colimit of F is called a coequalizer and the underlying object is denoted
by coeq(f, g). If C admits a zero object and g is the zero morphism, these are called
respectively kernel and cokernel of f : ker(f) = eq(f, 0), coker(f) = coeq(f, 0).

Example 1.3.21. For I = (• → • ← •), F : I → C is given by a pair of morphisms
f : A→ B, g : C → B with the same target in C. A limit of F is called a pullback of
(f, g) or a fiber product of A and C above B and the underlying object is denoted
by A ×B C. Let us spell out the definition. A pullback of (f, g) is an object D
of C equipped with morphisms a : D → A, c : D → C such that fa = gc and
satisfying the following universal property: For every object E of C equipped with
morphisms a′ : E → A, c′ : E → C such that fa′ = gc′, there exists a unique
morphism e : E → D such that a′ = ae and c′ = ce. The universal property can be
visualized as follows

E

e  

c′

''
a′

��

D c
//

a
��

C

g
��

A
f // B.

In this case, the square above is said to be Cartesian.
Dually, for I = (• ← • → •), a colimit indexed by I is called a pushout. The

underlying object B of the colimit of (A← D → C) is denoted by A⨿D C and the
square

D C

A B

is said to be coCartesian.

Remark 1.3.22. A morphism f : X → Y is a monomorphism if and only if the
following is a pullback square

X X

X Y.

id

id f

f

Example 1.3.23. The category Set admits small limits. For a functor F : I → Set,
limF is represented by the subset L ⊆ ∏i∈Ob(I) F (i) consisting of elements (xi) such
that F (f)(xi) = xj for every morphism f : i → j is small, whenever L. The same
holds for limits in Grp, R-Mod, and Ring.

For example, for I = (•⇒ •) and f, g : X → Y in Set, eq(f, g) can be identified
with the subset {x ∈ X | f(x) = g(x)} of X.
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Example 1.3.24. The category Set admits small colimits. For a functor F : I →
Set, colimF is represented by the quotient

Q =
 ∐
i∈Ob(I)

F (i)
 / ∼

by the equivalence relation ∼ generated by x ∼ F (f)(x) for f : i→ j and x ∈ F (i),
whenever Q is small.

Similarly, the category R-Mod admits small colimits. For a functor F : I → Set,
colimF is represented by the quotient

Q =
 ⊕
i∈Ob(I)

F (i)
 /M

by the R-submodule M generated by x − F (f)(x) for f : i → j and x ∈ F (i),
whenever Q is small.

Definition 1.3.25. Let S : I → C be a functor. We say that a functor F : C → D
preserves (or commutes with) a limit a : ∆X → S of S, if ∆(FX) = F I(∆X) F I(a)−−−→
F I(S) is a limit of F I(S) = F ◦ S. Here F I = F ◦ − : CI → DI . We say F : C → D
preserves limits if it preserves all limits that exist in C.

The preservation of limit can be written as F (limi∈I S(i)) ≃ limi∈I F (S(i)).

Proposition 1.3.26. Let C be a category with small Hom sets. For every object X
of C, the functor HomC(X,−) : C → Set preserves limits (that exist in C). Dually,
the functor HomC(−, X) : Cop → Set preserves limits (that exist in Cop).

Proof. Let F : I → C be a functor. For the first assertion, it suffices to show that
the canonical map

HomC(X, limF )→ lim HomC(X,F−)

is a bijection. Under the description of the limit in the right-hand side in Example
1.3.23, the map sends a to (pi ◦ a)i∈Ob(I), where pi : limF → F (i) is the canonical
morphism. The map is a bijection by the universal property for limF .

The last assertion follows from the first one applied to Cop.

Warning 1.3.27. None of the forgetful functors

Grp→ Set, Ab→ Set, Ab→ Grp

preserve finite coproducts.

Comma categories
Let F : C → D be a functor. For an object Y of D, we let (F ↓ Y ) denote the
category defined as follows. An object of (F ↓ Y ) is a pair (X, f), where X is an
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object of C and f : FX → Y is a morphism of D. A morphism (X, f)→ (X ′, f ′) is
a morphism h : X → X ′ such that f = f ′(Fh), i.e. the following diagram commutes

FX

f ##

Fh // FX ′

f ′

��
Y.

Dually, we let (Y ↓ F ) denote the category of pairs (X, f), where X is an object
of C and f : Y → FX is a morphism of D. A morphism (X, f) → (X ′, f ′) is a
morphism h : X → X ′ such that f ′ = (Fh)f . We have an isomorphism of categories
(F ↓ Y )op ≃ (Y ↓ F op), where F op : Cop → Dop.

Example 1.3.28. Let C and I be categories and let ∆: C → CI := Fun(I, C) be
the “diagonal” functor carrying X to the constant functor of value X. Then we
have obvious isomorphisms of categories (∆ ↓ F ) ≃ C/F and (F ↓ ∆) ≃ CF/. Thus
comma categories generalize over-categories and under-categories.

Universal constructions
Let F : C → D be a functor and let Y be an object of D. A universal arrow from U
to Y is a final object of (F ↓ Y ). A universal arrow from Y to U is an initial object
of (Y ↓ F ).

Remark 1.3.29. Note that (X0, ϵ : FX0 → Y ) is a final object of (F ↓ Y ) if
and only if the map HomC(X,X0) → HomD(FX, Y ) carrying f to the composite
FX

Ff−→ FX0
ϵ−→ Y is a bijection for all X.

Example 1.3.30. Let U : Grp→ Set be the forgetful functor and let S be a small
set. The free group FS with basis S, equipped with the map i : S → UFS satisfies
the following property: for every small group G equipped with a map f : S → UG,
there exists a unique homomorphism h : FS → G such that f = (Uh)i. Thus (FS, i)
is an initial object of (S ↓ U).

1.4 Adjunction

Adjunction
Definition 1.4.1 (Kan). Let C and D be categories. An adjunction is a triple
(F,G, ϕ), where F : C → D and G : D → C are functors, and ϕ is a natural isomor-
phism ϕXY : HomD(FX, Y ) ∼−→ HomC(X,GY ). We then say that F is left adjoint to
G, G is right adjoint to F , and (F,G) is a pair o adjoint functors, and we sometimes
write ϕ : F ⊣ G.

If C and D have small Hom sets, then ϕ is a natural isomorphism of functors
Cop ×D → Set.

Example 1.4.2. The free group functor F : Set → Grp is left adjoint to the
forgetful functor U : Grp→ Set.
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Example 1.4.3. Let I be a category. If C admits limits indexed by I, then, by
Remark 1.3.29, we have a bijection

HomC(X, limF ) ≃ HomCI (∆X,F )

natural in X and F , exhibiting the limit functor lim: CI → C as a right adjoint to
the diagonal functor ∆: C → CI . Dually, if C admits colimits indexed by I, then the
colimit functor colim: CI → C is left adjoint to the diagonal functor ∆: C → CI .

Example 1.4.4. Let X, Y , Z be small sets. Then we have a bijection

HomSet(X × Y, Z) ≃ HomSet(X,HomSet(Y, Z))

natural in X, Y , Z. Thus −× Y ⊣ HomSet(Y,−).

Example 1.4.5. Let R, S, T be rings and consider small bimodules MR S , NS T ,
and PR T . We have isomorphisms of abelian groups

Hom(R,T )-Mod(M ⊗S N,P ) ≃ Hom(R,S)-Mod(M,HomMod-T (N,P )),
Hom(R,T )-Mod(M ⊗S N,P ) ≃ Hom(S,T )-Mod(N,HomR-Mod(M,P )),

natural inM , N , P . Thus−⊗SN ⊣ HomMod-T (N,−) andM⊗S− ⊣ HomR-Mod(M,−).

Remark 1.4.6. Let ϕ : F ⊣ G be an adjunction. Then ϕ induces Gop ⊣ F op.

Proposition 1.4.7. Let ϕ : F ⊣ G. Then G is determined by F up to natural
isomorphism.

Proof. Let ϕ′ : F ⊣ G′. Consider the natural isomorphism ϕ′−1◦ϕ : HomD(X,GY ) ∼−→
HomD(X,G′Y ). By Yoneda’s lemma, this is given by an isomorphism GY → G′Y ,
which is natural in Y by the naturalness of ϕ and ϕ′.

The following proposition shows that the functoriality of an adjoint is automatic.

Proposition 1.4.8. Let F : C → D be a functor. Assume that C and D have small
Hom sets. Then F admits a right adjoint if and only if for every object Y of D, the
functor hD(Y ) ◦ F = HomC(F−, Y ) is representable.

Proof. We can construct an adjunction ϕ : F ⊣ G as follows. For every object Y
of D, choose an object GY of C and an isomorphism ϕ : hD(Y ) ◦ F ∼−→ hC(GY ).
For every morphism Y → Y ′, we get a morphism GY → GY ′ in C by Yoneda’s
lemma.

We leave it to the reader to state duals of the preceding propositions.

Proposition 1.4.9. Let F : C → D, F ′ : D → E, G : D → C, G′ : E → D be functors
and let ϕ : F ⊣ G, ϕ′ : F ′ ⊣ G′ be adjunctions. Then ϕϕ′ : F ′F ⊣ GG′.

Proof. Indeed we have

HomE(F ′FX, Y )
ϕ′

F X,Y−−−−→
∼

HomD(FX,G′Y )
ϕX,G′Y−−−−→

∼
HomC(X,GG′Y ).
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Unit, counit
The naturalness of ϕ means

(1.4.1) ϕ(b ◦ f ◦ Fa) = Gb ◦ ϕ(f) ◦ a,

for all a : X ′ → X, f : FX → Y , b : Y → Y ′. Let ηX = ϕ(idFX) : X → GFX and
let ϵY = ϕ−1(idGY ) : FGY → Y . By (1.4.1), η : idC → GF and ϵ : FG → idD are
natural transformations. We call η the unit and ϵ the counit. Note that (1.4.1)
implies that

F
Fη−→ FGF

ϵF−→ F, G
ηG−→ GFG

Gϵ−→ G

are identity transformations: ϵF ◦Fη = idF , Gϵ◦ηG = idG. Indeed, ϕ(ϵFX ◦FηX) =
ϕ(ϵFX) ◦ ηX = ηX = ϕ(idFX) and the second relation is proved similarly. Note that
(1.4.1) also implies that ϕ is determined by η by the rule ϕ(f) = Gf ◦ ηX for
f : FX → Y . Moreover, ϕ−1 is determined by ϵ by the rule ϕ−1(g) = ϵY ◦ Fg for
g : X → GY .

Example 1.4.10. Let U : Ab→ Set be the forgetful functor and let F : Set→ Ab
be the functor carrying S to Z(S) = ⊕

s∈S Zas. The unit S → UFS carries s to as.
The counit FUA→ A carries ∑s∈A nsas to ∑s∈A nss.

Proposition 1.4.11. Let C and D be categories. An adjunction (F,G, ϕ) is uniquely
determined by each of the following data:

(1) Functors F : C → D, G : D → C and natural transformations η : idC → GF ,
ϵ : FG→ idD be such that ϵF ◦ Fη = idF , Gϵ ◦ ηG = idG.

(2) A functor F : C → D, and for every object Y of D, a final object (GY, ϵY ) of
(F ↓ Y );

(3) A functor G : D → C, and for every object X of C, an initial object (FX, ηX)
of (X ↓ G);

Part (2) is in some sense a restatement of Proposition 1.4.8.

Proof. For (1), note we have seen that ϕ(f) = Gf ◦ ηX is uniquely determined.
Clearly ϕ a natural transformation. Put ψ(g) = ϵY ◦ Fg. Then

ϕψ(g) = ϕ(ϵY ◦ Fg) = GϵY ◦GFg ◦ ηX = GϵY ◦ ηGY ◦ g = g.

Similarly, ψϕ(f) = f . Thus ϕ is a natural isomorphism.
(2) and (3) are dual to each other. We only treat (3). For any morphism

a : X → X ′ in C, there exists a unique morphism Fa : FX → FX ′ in D such that
the diagram

X
ηX //

a
��

GFX

GFa
��

X ′ ηX′ // GFX ′

commutes. It is easy to check that F : C → D is a functor. The above commutativity
means that η : idC → GF is a natural transformation. Then ϕ(f) = Gf ◦ ηX
is uniquely determined. Clearly ϕ is a natural transformation, and is a natural
isomorphism by the universal property.



1.4. ADJUNCTION 17

Proposition 1.4.12. Let ϕ : F ⊣ G. Then
(1) F is fully faithful if and only if the unit η : idC → GF is a natural isomorphism.
(2) G is fully faithful if and only if the counit ϵ : FG → idD is a natural isomor-

phism.

Proof. By (1.4.1), for f : X → X ′, we have ϕ(Ff) = ϕ(idFX′ ◦ f) = ϕ(idFX′) ◦ f =
ηX′ ◦ f . In other words, the composite

HomC(X,X ′) F−→ HomD(FX,FX ′) ϕ−→
∼

HomC(X,GFX ′)

is induced by ηX′ . Then (1) follows from Yoneda’s lemma. We obtain (2) by duality.

Corollary 1.4.13. Let ϕ : F ⊣ G. Then the following conditions are equivalent:
(1) F is an equivalence of categories.
(2) G is an equivalence of categories.
(3) F and G are fully faithful.
(4) The unit η : idC → GF and counit ϵ : FG→ idD are natural isomorphisms.

Under these conditions, F and G are quasi-inverse to each other.

Proof. If F is an equivalence, then, by the proposition, idC ≃ GF , so that G is also
an equivalence. By duality, (1)⇐= (2). It is clear that (4) =⇒ (1)+(2) =⇒ (3). By
the proposition, (3) =⇒ (4).

Remark 1.4.14. If F is an equivalence of categories and G is a quasi-inverse to F ,
then G is both right adjoint to F and left adjoint to F .

Adjunction and (co)limits
Proposition 1.4.15. Let F : C → D be left adjoint to G : D → C. Then

(1) F J : CJ → DJ is left adjoint to GJ : DJ → CJ for any category J ;
(2) G preserves limits (that exist in D) and F preserves colimits (that exist in C).

Proof. (1) follows from the determination of adjunction by unit and counit (Propo-
sition 1.4.11 (1)). For (2), by duality it suffices to show the first assertion. Let
S : J → D be a functor such that limS exists. Consider the commutative square

(1.4.2) C ∆ //

F
��

CJ

FJ

��
D ∆ // DJ .

The canonical morphism G limS → limGJS is an isomorphism, because it induces
a bijection

HomC(X,G limS) ≃ HomD(FX, limS) ≃ HomDJ (∆FX, S) = HomDJ (F J∆X,S)
≃ HomCJ (∆X,GJS) ≃ HomC(X, limGJS)

for every X.
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In the case where C and D admit limits indexed by J , part (2) of the proposition
can be paraphrased as follows: (1.4.2) induces by taking right adjoints a square

C CJlimoo

D
G

OO

DJ
GJ

OO

limoo

which commutes up to natural isomorphism.

Example 1.4.16. Let C, P , I be categories.
(1) The functor ∆I : CP → (CP )I can be identified with the functor (∆I)P : CP →

(CI)P via the canonical isomorphism (CP )I ≃ (CI)P . Thus, if C admits limits indexed
by I, then CP admits limits indexed by I and limI : (CP )I → CP can be identified
with (limI)P : (CI)P → CP . In this case, limits indexed by I can be computed
pointwise: The evaluation functor Ep : CP → C at any object p of P preserves limits
indexed by I. For a generalization to the case where C does not admit all limits
indexed by I, see Proposition 1.4.17 below.

(2) Limits preserve limits: If C admits limits indexed by P , the limit functor
limP : CP → C is right adjoint to ∆P and hence preserves limits.

(3) If C admits limits indexed by P and I, we have a diagram

C CPlimPoo

CI
limI

OO

CP×I

(limI)P

OO

(limP )I
oo

limP ×I

gg

which commutes up to natural isomorphisms. Here we have identified (CP )I and
(CI)P with CP×I via the canonical isomorphisms.

Proposition 1.4.17. Let C, I, P be categories and let F : I → CP be a functor such
that for each object p of P , Fp = Ep ◦F : I → C admits a limit τp : ∆Lp → Fp. Here
Ep : CP → C denotes the evaluation functor at p carrying G to G(p). Then there
exists a unique functor L : P → C such that L(p) = Lp and p 7→ τp gives a natural
transformation τ : ∆L→ F . Moreover, this τ exhibits L as a limit of F .

Proof. This follows easily from the universal properties of limits. We leave the
details to the reader.

Remark 1.4.18. Example 1.4.16 also holds for colimits. In particular, colimits
preserve colimits.

Limits and colimits do not commute with each other in general. For example,
in Set, for nonempty sets X, X ′, Y , Y ′, the canonical map (X ×X ′)∐(Y × Y ′)→
(X ∐

Y )× (X ′∐Y ′) is not a bijection. See however Propositions 1.6.26 and 1.6.27
for cases where limits and colimits do commute with each other.

The rest of this section is not used elsewhere in these notes. In favorable cases
one can give necessary and sufficient conditions for the existence of adjoints. Let us
first give a criterion for the existence of an initial object.
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Theorem 1.4.19. Let D be a category with small Hom sets and admitting small
limits. Then D has an initial object if and only if it satisfies the following Solution
Set Condition: there exists a small set S of objects of D that is weakly initial in the
sense that for every object x of D, there exist s ∈ S and a morphism s→ x.

Note that the condition is a set-theoretic one that is automatically satisfied if D
is small (by taking S to be Ob(D)).

Proof. (Copied from [ML2, Theorem X.2.1]) The “only if” part is clear: if i is an
initial object, then S = {i} satisfies the Solution Set Condition. Let us show the “if”
part. We let S also denote the full subcategory of D spanned by S. Let F : S → D
be the inclusion. We claim that i = limF is an initial object of D. Choose, for
every object x of D, a morphism fx : i → x that factorizes through the projection
p : i → s to some s ∈ S. We get a cone ∆i → idD. Indeed, for every morphism
x→ x′, we have a commutative diagram

i

p
��

p

��

p

��

fx

��

fx′

��

s′′

��
s

yy

x′′oo // s′

&&
x // x′,

where x′′ is the fiber product of s and s′ over x′. We may assume that for all s ∈ S,
fs : i→ s is the projection. We conclude by the following lemma.

Lemma 1.4.20. Let F : S → D be a functor and let c : ∆i → idD be a cone such
that cF : ∆i→ F is a limiting cone. Then i is initial.

Proof. Since c is a cone, the diagram

i
ci

��

cF s

  
i

cF s // Fs

commutes for every s ∈ Ob(S). Since cF is limiting, this implies ci = idi. Since c is
a cone, for every morphism i→ x, the diagram

i
ci

��

cx

��
i // x

commutes, so that cx is the unique morphism i→ x.
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Theorem 1.4.21 (Freyd Adjoint Functor Theorem). Let D be a category with small
Hom sets and admitting small limits. Let G : D → C be a functor. Then G admits
a left adjoint if and only if G preserves small limits and satisfies the Solution Set
Condition: for each object X of C, there exists a small set of objects S of (X ↓ G)
that is weakly initial (namely, for every object x of (X ↓ G), there exist s ∈ S and
a morphism s→ x in (X ↓ G)).

Proof. Recall from Proposition 1.4.11 that G admits a left adjoint if and only if
(X ↓ G) admits an initial object for every object X of C. The “only if” part then
follows from Proposition 1.4.15. To show the “if” part, we apply Theorem 1.4.19. It
suffices to check, under the assumption that G preserves small limits, that (X ↓ G)
admits small limits. Let I be a small category and let F : I → (X ↓ G) be a functor.
We write Fi as (Yi, fi : X → GYi). Let Y be the limit of Yi in D. Since G preserves
small limits, (fi) determines a morphism f : X → GY . It is easy to check that
(X, f) is the limit of F .

1.5 Additive categories

Additive categories
Recall that a magma is a set equipped with a binary operation. The magma is said
to be unital if it has an identity element.

Proposition 1.5.1. Let A be a category with each HomA(X, Y ) equipped with a
structure of unital magma such that composition is bilinear. Let A1 and A2 be
objects of A. Then the following conditions are equivalent.

(1) A1 × A2 exists.
(2) A1 ⨿ A2 exists.

Under these assumptions, the morphism ϕA1,A2 : A1 ⨿ A2 → A1 × A2 described by

the matrix
(

idA1 0
0 idA2

)
is an isomorphism. Moreover, if Y × Y and Y × Y × Y

exist, then HomA(X, Y ) is a commutative monoid, and for f, f ′ : X → Y , f + f ′ is
given by the composition

(1.5.1) X
(f,f ′)−−−→ Y × Y

ϕ−1
Y Y−−→ Y ⨿ Y (idY ,idY )−−−−−→ Y.

We denote the operation on HomA(X, Y ) by + and the identity element by
0 = 0XY . The bilinearity of composition means the following: for f, f ′ : X → Y and
g, g′ : Y → Z, we have (a) g(f+f ′) = gf+gf ′, (g+g′)f = gf+g′f ; (b) g0XY = 0XZ ,
0Y Zf = 0XZ . Condition (b) follows from (a) if HomA(X,Z) is a group. If A admits
a zero object, it follows from (b) that the zero morphism zXY : X → Y (that factors
through every zero object) is the unit of HomA(X, Y ). Indeed, zXY = 0Y Y zXY =
0XY .

Proof. By duality we may assume that (1) holds. Let i1 = (idA1 , 0) : A1 → A1 ×A2
and let i2 = (0, idA2) : A2 → A1 × A2. We show that (A1 × A2, i1, i2) exhibits
A1 × A2 as a coproduct of A1 and A2. Let B be an object of A equipped with
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h1 : A1 → B and h2 : A2 → B. We put h = ⟨h1, h2⟩ = h1p1 + h2p2 : A1 × A2 → B.
Here p1 : A1 × A2 → A1 and p2 : A1 × A2 → A2 are the projections. Then hi1 =
h1p1i1 + h2p2i1 = h1 + 0 = h1 and similarly hi2 = h2. If h′ : A1 × A2 → B is a
morphism such that h′i1 = h1, h′i2 = h2. Then

h′ = h′(i1p1 + i2p2) = h1p1 + h2p2 = h

by Lemma 1.5.2 below. Therefore, (2) and the second assertion hold.
Assume that Y × Y exists. Then in (1.5.1), (idY , idY ) = (p1 + p2)ϕY Y . Thus

f + f ′ = (p1 + p2)(f, f ′) = (idY , idY )ϕ−1
Y Y (f, f ′)

is given by (1.5.1). The diagram

X
(f,f ′)//

(f ′,f) ##

Y × Y
ϕ−1

Y Y //

(p2,p1)≃
��

Y ⨿ Y(id,id) //

(i2,i1) ≃
��

Y

Y × Y
ϕ−1

Y Y // Y ⨿ Y
(id,id)

;;

commutes, which implies f + f ′ = f ′ + f . Here the square in the middle commutes
since the following square commutes

Y × Y
(p2,p1)≃
��

Y ⨿ Y
(i2,i1) ≃

��

ϕY Yoo

Y × Y Y ⨿ Y.ϕY Yoo

Assume moreover that Y × Y × Y exists. For f, f ′, f ′′ : X → Y , f + (f ′ + f ′′) is
given by the composition

X

(f,(f ′,f ′′))
��

(f,f ′+f ′′) // Y × Y
ϕ−1

Y Y // Y ⨿ Y // Y

Y × (Y × Y )
idY ⨿ϕ−1

Y Y// Y × (Y ⨿ Y )
ϕ−1

Y,Y ⨿Y//

OO

Y ⨿ (Y ⨿ Y )

OO

The diagram

Y × (Y × Y )
≃
��

idY ×ϕ−1
Y Y// Y × (Y ⨿ Y )

ϕ−1
Y,Y ⨿Y// Y ⨿ (Y ⨿ Y )

≃
��

(Y × Y )× Y
ϕ−1

Y Y ×idY// (Y ⨿ Y )× Y
ϕ−1

Y ⨿Y,Y// (Y ⨿ Y )⨿ Y

commutes, because the inverse of the composition of the upper horizontal arrows
and the inverse of the composition of the lower horizontal arrows are both given by

the matrix

idY 0 0
0 idY 0
0 0 idY

. Therefore, f + (f ′ + f ′′) = (f + f ′) + f ′′.

Lemma 1.5.2. Under the above notation, i1p1 + i2p2 = idA1×A2.



22 CHAPTER 1. CATEGORIES AND FUNCTORS

Proof. We have p1(i1p1 + i2p2) = p1i1p1 + p1i2p2 = p1 + 0 = p1 and similarly
p2(i1p1 + i2p2) = p2. Therefore, i1p1 + i2p2 = idA1×A2 .

Remark 1.5.3. Under the assumptions (1) and (2) of Proposition 1.5.1, the compo-
sition of C (a,b)−−→ A1×A2

⟨c,d⟩−−→ B is ⟨c, d⟩(a, b) = ca+db. In other words, composition
is given by matrix multiplication, with (a, b) considered as a column vector and ⟨c, d⟩
considered as a row vector.

Proposition 1.5.4. Let A be a category admitting a zero object, finite products,
and finite coproducts satisfying

(*) The morphism ϕY Y : Y ⨿ Y → Y × Y described by the matrix
(

idY 0
0 idY

)
is

an isomorphism for every object Y of A.
Then there exists a unique way to equip every HomA(X, Y ) with the structure of
a unital magma such that composition is bilinear. Moreover, HomA(X, Y ) is a
commutative monoid.

Here 0 in the description of ϕY Y denotes the zero morphism (that factors through
every zero object).

Proof. For morphisms f, f ′ : X → Y , we define f + f ′ to be the composition

X
(f,f ′)−−−→ Y × Y

ϕ−1
Y Y−−→ Y ⨿ Y (idY ,idY )−−−−−→ Y.

The diagram

X
(f,0)//

f ##

Y × Y
ϕ−1

Y Y // Y ⨿ Y
(idY ,idY )

##
Y

(idY ,0)−1
//

(idY ,0) OO

Y ⨿ 0(idY ,0) //

idY ⨿0

OO

Y

commutes, so that f + 0 = f . Similarly 0 + f = f . This construction equips
HomA(X, Y ) with the structure of a unital magma. It is clear from the construction
that (g + g′)f = gf + g′f . The diagram

X
(f,f ′)//

(gf,gf ′) ##

Y × Y
ϕ−1

Y Y //

g×g
��

Y ⨿ Y(idY ,idY )//

g⨿g
��

Y

g

��
Z × Z

ϕ−1
ZZ // Z ⨿ Z(idZ ,idZ) // Z

commutes, so that g(f + f ′) = gf + gf ′. Moreover, 0f = 0 and g0 = 0. Thus the
composition law on A is bilinear.

The uniqueness and the fact that HomA(X, Y ) is a commutative monoid follows
from Proposition 1.5.1.

In a category satisfying the above assumptions, coproducts are also called direct
sums and we often write ⊕ instead of ⨿.
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Remark 1.5.5. Let A be a category satisfying the assumptions of Proposition 1.5.4.
Let A, A1, A2 be objects of A equipped with morphisms pj : A → Aj, ij : Aj → A,
i = 1, 2, satisfying pjij = idAj

, i = 1, 2 and

(1.5.2) i1p1 + i2p2 = idA.

Then A can be identified with the direct sum of A1 and A2, and pj and ij can be iden-
tified with the canonical morphisms. More precisely, the morphisms (p1, p2) : A →
A1 ⊕ A2 and (i1, i2) : A1 ⊕ A2 → A are inverse to each other. Indeed, multiplying
(1.5.2) by p1 on the left and i2 on the right, we get p1i2 = 0. Similarly, p2i1 = 0.

Definition 1.5.6. An additive category is a category A admitting a zero object,
finite products, finite coproducts, satisfying (∗) above4, and such that the commu-
tative monoids HomA(X, Y ) are abelian groups.

Remark 1.5.7. By Proposition 1.5.1, if A is a category with each HomA(X, Y )
equipped with a structure of abelian group such that composition is bilinear5, and
such that A admits a zero object, finite products (or finite coproducts), then A is
an additive category.

Example 1.5.8. Let R be a ring. Then R-Mod is an additive category. Indeed,
R-Mod admits finite products, the Hom sets are naturally equipped with structures
of abelian groups and composition is bilinear.

Example 1.5.9. Let B be an additive category. Let A ⊆ B be a full subcategory
such that for A and A′ in A, the direct sum A⊕A′ in B is isomorphic to an object
of A. Then A is an additive category by Lemma 1.5.10 below. In particular, the
full subcategory R-mod of R-Mod spanned by finitely generated R-modules is an
additive category. Similarly, the full subcategory of R-Mod spanned by free left
R-modules is also an additive category.

Lemma 1.5.10. Let B be a full subcategory of C and let F : I → B be a functor. If
p : ∆X → F exhibits X as a limit of F in C with X in B, then p exhibits X as a
limit of F in B.

Proof. This follows easily from the universal properties of limits. We leave the
details to the reader.

Warning 1.5.11. The converse of the lemma is false. For example, the inclusion
Z≤−1 ⊆ Z≤0 does not preserve the final object. Here Z is equipped with the usual
order.

Example 1.5.12. Let A be an additive category. Then Aop is an additive category.

Example 1.5.13. Let A be an additive category and let P be a category. Then
the functor category AP is an additive category. For X, Y : P → A, HomAP (X, Y )
is a subgroup of ∏p∈Ob(P ) HomA(Xp, Yp).

4A category A admitting a zero object, finite products, finite coproducts, and satisfying (∗)
above is called a semiaddtive category.

5A category A with each HomA(X, Y ) equipped with a structure of abelian group such that
composition is bilinear is called a preadditive category, or a category enriched over (Ab,⊗).
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Additive functors
Proposition 1.5.14. Let F : A → B be a functor between additive categories. Then
the following conditions are equivalent:

(1) F preserves products of pairs of objects;
(2) F preserves coproducts of pairs of objects;
(3) for every pair of objects A, A′ of A, the map HomA(A,A′)→ HomB(FA, FA′)

induced by F is a homomorphism.

The proposition holds more generally for functors between categories satisfying
Proposition 1.5.4 (admitting zero objects, finite products, finite coproducts, and
satisfying (∗)).

Proof. Let A1 and A2 be objects of A and let pj : A1 × A2 → Aj, j = 1, 2 be the
projections.

(1) =⇒ (2). Let us first show that F carries zero objects to zero objects. Note
that any zero object 0 is the product of 0 and 0, with id0 as the projections. By (1),
F (0) is the product of F (0) and F (0), with idF (0) as the projections, so that F (0)
is a zero object by Lemma 1.5.15 below. It follows that F carries zero morphisms
to zero morphisms. Now let ϕ : A1 ⨿ A2

∼−→ A1 × A2 be the isomorphism described

by the matrix
(

idA1 0
0 idA2

)
and let ιj : Aj → A1 ⨿ A2, j = 1, 2 be the canonical

morphisms. Then the composite

F (A1)⨿ F (A2)
(Fι1,F ι2)−−−−−→ F (A1 ⨿ A2)

F (ϕ)−−→
∼

F (A1 × A2)
(Fp1,Fp2)−−−−−−→

∼
F (A1)× F (A2)

is (
F (idA1) F (0)
F (0) F (idA2)

)
=
(

idF (A1) 0
0 idF (A2)

)
,

which is an isomorphism. Therefore, (Fι1, F ι2) is an isomorphism.
By duality, we have (2) =⇒ (1).
(1) =⇒ (3). Let f, g : A → B. Then f + g = ⟨id, id⟩(f, g), so that F (f + g) =

⟨id, id⟩(Ff, Fg) = Ff + Fg.
(3) =⇒ (1). We must show that (Fp1, Fp2) : F (A1 × A2) → FA1 × FA2 is an

isomorphism. Let us check that F (i1)q1 +F (i2)q2 is an inverse to (Fp1, Fp2), where
qj : FA1 × FA2 → FAj, j = 1, 2 are the projections and ij : Aj → A1 ×A2, j = 1, 2
are the canonical morphisms. We have

(Fp1)(F (i1)q1 + F (i2)q2) = F (id)q1 + F (0)q2 = q1,

(Fp2)(F (i1)q1 + F (i2)q2) = F (0)q1 + F (id)q2 = q2.

Thus
(Fp1, Fp2)(F (i1)q1 + F (i2)q2) = (q1, q2) = id.

Moreover,

(F (i1)q1 + F (i2)q2)(Fp1, Fp2) = F (i1)q1(Fp1, Fp2) + F (i2)q2(Fp1, Fp2)
= F (i1)F (p1) + F (i2)F (p2) = F (i1p1 + i2p2) = F (id) = id.

Here we used Lemma 1.5.2.
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Lemma 1.5.15. Let A and B be objects of a category C with a zero object.
(1) B is a zero object if and only if idB = 0.
(2) If A×B exists, with the projection p : A×B → A being an isomorphism, then

B is a zero object.

Proof. (1) Indeed, idB = 0 is equivalent to the assertion that the morphisms 0→ B
and B → 0 are inverses of each other.

(2) Let q : A × B → B be the projection. Consider the morphisms 0: B → A
and idB : B → B. There exists a unique morphism f = (0, idB) : B → A × B such
that pf = 0, qf = idB. It follows that f = 0, idB = 0, so that B is a zero object by
(1).

Remark 1.5.16. Even in an additive category, A × B ≃ A does not imply B ≃ 0
in general. For example, if A = Z(S) is the free abelian group with an infinite basis
S, then any bijection S⨿S ≃ S induces an isomorphism A⊕A ≃ A in the category
Ab.

Definition 1.5.17. We say that a functor F : A → B between additive categories is
additive if it satisfies the conditions of Proposition 1.5.14. We say that a subcategory
A of an additive category B is an additive subcategory if A is additive and the
inclusion functor is additive.

If F is a functor between additive categories admitting a left or right adjoint, then
F is additive. A composition of additive functors is additive. The term “additive
subcategory” needs to be used with caution, as a subcategory of an additive category
can be an additive category without being an additive subcategory.

Remark 1.5.18. Let B be an abelian category. A full subcategory A of B is an
additive subcategory if and only if A admits a zero object 0 of B and for A and A′

in A, the direct sum A⊕ A′ in B is isomorphic to an object of A.

Example 1.5.19. Let A be an additive category and let F : P → Q be a functor.
Then the functor AQ → AP induced by F is additive.

Example 1.5.20. Let A be an additive category. The functor −⊕− : A×A → A
is additive. It follows that the functor A → A given by A 7→ A⊕A is additive. Let
B be an object of A. The functor −⊕B : A → A is not additive unless B = 0.

Example 1.5.21. Let R, S, T be rings. The functor − ⊗S − : (R, S)-Mod ×
(S, T )-Mod → (R, T )-Mod not additive in general. By contrast, it is additive in
each variable. That is, given MR S and NS T , M ⊗S − : (S, T )-Mod→ (R, T )-Mod
and −⊗S N : (R, S)-Mod→ (R, T )-Mod are additive functors. The functor

(S, S)-Mod→ (S, S)-Mod, A 7→ A⊗S A

is not additive unless S = 0 (assuming S small).

Example 1.5.22. Let A be an additive category with small Hom sets. The functor
HomA : Aop ×A → Ab is additive in each variable.
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1.6 Abelian categories

Kernels and cokernels
In any category, the equalizer e : E → X of a pair of morphisms (f, g) : X ⇒
Y , whenever it exists, is always a monomorphism. Indeed, if (a, b) : A ⇒ E are
morphisms such that ea = eb, then a = b by the universal property of the equalizer.
Dually, a cokernel, whenever it exists, is an epimorphism.

Lemma 1.6.1.
(1) In a category with a zero object, every monomorphism f : X → Y has zero

kernel, and every epimorphism has zero cokernel.
(2) In an additive category, every morphism of zero kernel f : X → Y is a monomor-

phism and every morphism of zero cokernel is an epimorphism.

Proof. We prove the assertions on monomorphisms and those on epimorphisms fol-
low by duality.

(1) We check that 0 00→X−−−→ X satisfies the universal property of a kernel of f . We
have f00→X = 0. Let g : Z → X be a morphism such that fg = 0Z→Y . Since g is a
monomorphism, we have g = 0Z→X .

(2) Let (g, h) : Z → X be morphisms such that fg = fh. Then f(g − h) = 0. It
follows that g − h = 0, so that g = h.

In an additive category, the equalizer of (f, g) is the kernel of f − g and the
coequalizer of (f, g) is the cokernel of f − g.

Remark 1.6.2. Let F : I → C be a functor. Assume that the products A =∏
i∈Ob(i) F (i) and B = ∏

f : i→j F (j) (f running through morphisms of I) exist. Then
limF can be identified with eq(a, b), where a, b : A→ B are such that af : A→ F (j)
is the projection and bf : A → F (i) F (f)−−→ F (j) is the composition of the projection
with F (f).

It follows that a category C admits small (resp. finite) limits if and only if C
admits equalizers and small (resp. finite) products. Dually, C admits small (resp.
finite) colimits if and only if C admits coequalizers and small (resp. finite) coproducts.
Similar statements hold for preservation of limits and colimits.

An additive category admitting kernels and cokernels admits all finite products
and finite coproducts.

Example 1.6.3. Let R be a ring. The additive category R-Mod admits finite
kernels and cokernels. Indeed, for a morphism f : A → B, ker(f) = f−1(0) and
coker(f) = B/im(f), where im(f) denotes the image of f .

Abelian categories
Definition 1.6.4. Let A be an additive category admitting kernels and cokernels
and let f : A → B be a morphism. We define the coimage and image of f to be
coim(f) = coker(g), im(f) = ker(h), where g : ker(f) → A and h : B → coker(f)
are the canonical morphisms.
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In the above situation, every morphism f : A→ B factors uniquely into

A↠ coim(f)→ im(f) ↪→ B.

Definition 1.6.5. An abelian category is an additive category A satisfying the
following axioms:

(AB1) A admits kernels and cokernels.
(AB2) For each morphism f : A → B, the morphism coim(f) → im(f) is an

isomorphism.

The axioms were introduced by Grothendieck in 1955 (see his seminal 1957
Tōhoku paper [G]). The notion was introduced independently in Buchsbaum’s 1954
thesis (under the name of “exact category”6, see [B] and [CE, Appendix]).

Example 1.6.6. By the first isomorphism theorem, R-Mod is an abelian category
for every ring R. The full subcategory of R-Mod consisting of Noetherian (resp.
Artinian) R-modules is stable under subobjects and quotients, and hence is an
abelian category. The category R-mod of finitely-generated R-modules is an abelian
category if and only if R is left Noetherian. Indeed, if I is a left ideal that is not
finitely generated, then the morphism A→ A/I has no kernel in R-mod.

Example 1.6.7. Let A be an abelian category. Then Aop is an abelian category.

Example 1.6.8. Let A be an abelian category and let P be a category. Then the
functor category AP is an abelian category.

Example 1.6.9. A topological abelian group is defined to be an abelian group
equipped with a topology such that the group law and a 7→ −a are continuous.
The category of topological abelian groups (where the morphisms are continuous
homomorphisms) is an additive category admitting kernels and cokernels, but does
not satisfy (AB2). For example, let f be the map Rdisc → R carrying x to x. Then
coim(f) = Rdisc and im(f) = R.

Remark 1.6.10. The following properties follow from (AB2) and Lemma 1.6.1:
(1) If a morphism is both a monomorphism and an epimorphism, then it is an

isomorphism.
(2) Every monomorphism is the kernel of its cokernel.
(3) Every epimorphism is the cokernel of its kernel.
(4) Every morphism f : A→ B can be decomposed into

A
g−→ im(f) h−→ B,

where g is an epimorphism and h is a monomorphism.

6This terminology is no longer in use. In modern usage, exact category refers to a more general
notion introduced by Quillen.
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Let A f−→ B
g−→ C be a sequence in an abelian category such that gf = 0. Then

the sequence decomposes uniquely into

A C

im(f) im(g)

B

ker(g) coker(f)

f g

Definition 1.6.11. We say that a sequence A f−→ B
g−→ C in an abelian category

is exact at B if gf = 0 and the morphism im(f) → ker(g) is an isomorphism
(or equivalently, coker(f) → im(g) is an isomorphism). We say that a sequence
A0 → A1 → · · · → An is exact if it is exact at each Ai, 1 ≤ i ≤ n− 1.

Example 1.6.12. (1) A sequence 0 → A → 0 is exact if and only if A is a zero
object.

(2) A sequence 0→ A
f−→ B is exact if and only if f is a monomorphism. Dually,

a sequence A f−→ B → 0 is exact if and only if f is an epimorphism.
(3) A sequence 0→ A

f−→ B → 0 is exact if and only if f is an isomorphism.
(4) A sequence 0 → A

f−→ B
g−→ C is exact if and only if f is the kernel of g.

Dually, a sequence A f−→ B
g−→ C → 0 is exact if and only if g is the cokernel

of f .
(5) A sequence 0→ A

f−→ B
g−→ C → 0 is an exact sequence if and only if g is the

cokernel of f and f is the kernel of g. Such a sequence is called a short exact
sequence.

Remark 1.6.13. Every exact sequence A f−→ B
g−→ C decomposes into a commuta-

tive diagram
A B C

im(f) im(g)

f g

where 0→ im(f)→ B → im(g)→ 0 is a short exact sequence.

Yoneda embedding for additive categories
Let A and B be additive categories. We let Funadd(A,B) ⊆ Fun(A,B) denote the
full subcategory spanned by additive functors. Note that Funadd(A,B) is an abelian
category if B is an abelian category.

Lemma 1.6.14. The forgetful functor induces a fully faithful functor Funadd(A,Ab)→
Fun(A,Set).
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Proof. The functor is faithful because the forgetful functor U : Ab→ Set is faithful.
It remains to show that for additive functors F and F ′, every natural transformation
α : UF → UF ′ lifts to a natural transformation F → F ′. Indeed, the group structure
of FX is induced by the map ⟨idFX , idFX⟩ : FX×FX → FX, which is the composite

FX × FX (Fp1,Fp2)−1

−−−−−−−→
∼

F (X ×X) F ⟨idX ,idX⟩−−−−−−→ FX.

Here p1, p2 : X ×X → X are the two projections. The diagram

FX × FX F (X ×X) FX

F ′X × F ′X F ′(X ×X) F ′X

αX×αX

(Fp1,Fp2)−1 F ⟨idX ,idX⟩

αX×X αX

(F ′p1,F ′p2)−1 F ′⟨idX ,idX⟩

commutes. In other words, αX is a group homomorphism.

Remark 1.6.15. Let A be an additive category with small Hom sets. Then the
Yoneda embedding can be lifted to an additive functor A → Funadd(Aop,Ab) car-
rying X to HomA(−, X), which is fully faithful by the above lemma.

Exact functors
Definition 1.6.16. Let C be a category admitting finite limits (resp. finite colimits).
We say that a functor F : C → D is left exact (resp. right exact) if it preserves finite
limits (resp. finite colimits). For C admitting finite limits and finite colimits, we say
that F is exact if it is both left exact and right exact.

A left exact functor between abelian categories is additive. The same holds for
right exact functor. A left adjoint functor between abelian categories is right exact.
A right adjoint functor between abelian categories is left exact.

Proposition 1.6.17. Let F : A → B be an additive functor between abelian cate-
gories. Then the following conditions are equivalent:

(1) F is left exact.
(2) F preserves kernels (or equivalently, for every exact sequence 0→ X → Y →

Z in A, 0→ FX → FY → FZ is an exact sequence in B).
(3) For every short exact sequence 0 → X → Y → Z → 0 in A, 0 → FX →

FY → FZ is an exact sequence in B.

Proof. (1) =⇒ (2) =⇒ (3). Obvious.
(2) =⇒ (1). This follows from Remark 1.6.2 and the assumption that F preserves

finite products.
(3) =⇒ (2). We decompose the sequence into a short exact sequence 0→ X →

Y
g−→ Z ′ → 0 and a monomorphism Z ′ i−→ Z. The latter extends to a short exact

sequence 0→ Z ′ i−→ Z → Z ′′. By (3),

0→ FX → FY
Fg−→ FZ ′ → 0,

0→ FZ ′ Fi−→ FZ → FZ ′′ → 0
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are exact. In particular, Fi : FZ ′ → FZ is a monomorphism. It follows that
0→ FX → FY

(Fi)(Fg)−−−−−→ FZ is exact.

Corollary 1.6.18. Let F : A → B be an additive functor between abelian categories.
Then the following conditions are equivalent:

(1) F is exact.
(2) For every exact sequence X → Y → Z in A, FX → FY → FZ is an exact

sequence in B.
(3) For every short exact sequence 0 → X → Y → Z → 0 in A, 0 → FX →

FY → FZ → 0 is a short exact sequence in B.
(4) F is left exact and preserves epimorphisms.
(5) F is right exact and preserves monomorphisms.

Proof. (1) =⇒ (2) =⇒ (3). Obvious.
(3) =⇒ (1). This follows from the proposition.
(1) =⇒ (4) =⇒ (3). Obvious.
(1) =⇒ (5) =⇒ (3). Obvious.

Example 1.6.19. Let A be an abelian category and let F : P → Q be a functor.
Then the functor AQ → AP induced by F is exact.

Example 1.6.20. Let A be an abelian category with small Hom sets. Then the
functor HomA : Aop ×A → Ab is left exact in each variable.

Example 1.6.21. Let A, B be abelian categories. If a functor F : A → B admits a
left (resp. right) adjoint, then F is left (resp. right) exact.

(1) If an abelian category A admits limits (resp. colimits) indexed by I, then
lim: AI → A (resp. colim: AI → A) is left (resp. right) exact. In particular,
for I = (• → •), ker : AI → A is left exact and coker : AI → A is right exact.
For I finite and discrete, the product functor AI → A is exact.

(2) Let R, S, T be rings and consider small bimodules MR S , NS T . Then −⊗S N
and M ⊗S − are right exact.

Theorem 1.6.22 (Freyd–Mitchell). Let A be a small abelian category. Then there
exists a small ring R and a fully faithful exact functor F : A → R-Mod.

We refer the reader to [KS2, Theorem 9.6.10] for a proof of the theorem, which
is beyond the scope of these lectures. Let us briefly indicate some ingredients used
in the proof. Applying the Yoneda embedding to Aop, we get a fully faithful functor
i : A → Pro(A) carrying X to HomA(X,−), where Pro(A) ⊆ Funadd(A,Ab)op de-
notes the full subcategory spanned by left exact functors A → Ab.7 One shows that
Pro(A) is an abelian category and i is an exact functor. We take R = EndA(G)op

for a suitable projective (see the next section) object G of Pro(A) and we take F
to be the composite of i and the exact functor Pro(A) → R-Mod carrying H to
HomPro(A)(G,H).

7More generally, for any category C, the category Pro(C) of pro-objects of C is the full subcat-
egory of Fun(C, Set)op spanned by small cofiltered limits of the image of the Yoneda embedding
C → Fun(C, Set)op.
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Filtered colimits
Definition 1.6.23. A nonempty category I is said to be filtered if

(1) For objects i, j in I, there exist morphisms i→ k, j → k in I; and
(2) For morphisms u, v : i ⇒ j in I, there exists a morphism w : j → k such that

wu = wv.
A category I is said to be cofiltered if Iop is filtered.

Example 1.6.24. A partially ordered set I is filtered if and only if for all i, j ∈ I,
there exists k ∈ I such that i ≤ k and j ≤ k.

(1) A totally ordered set is filtered.
(2) Let S be a set. The set IS of finite subsets of S, ordered by inclusion, is

filtered. Indeed, if T and T ′ are finite subsets of S, then so is T ∪ T ′. Given a
family of objects (Xs)s∈S in a category C admitting finite coproducts, ∐s∈S Xs

can be identified with colimT∈IS

∐
t∈T Xt. Thus a category admitting finite

coproducts and small filtered colimits admits small coproducts.

Remark 1.6.25. Recall from Example 1.3.24 and small colimits exist in the cat-
egory Set. Filtered colimits can be described more explicitly. Let I be a filtered
category and let F : I → Set be a functor. Then colimF is represented by

Q =
 ∐
i∈Ob(I)

F (i)
 / ∼

whenever Q is small. Here for x ∈ F (i) and y ∈ F (j), x ∼ y if and only if there
exist morphisms u : i→ k and v : j → k in I such that F (u)(x) = F (v)(y).

The underlying sets of filtered colimits in Grp, R-Mod, Ring admit the same
description. For example, in the case of R-Mod, for x ∈ F (i) and y ∈ F (j), [x]+ [y]
is defined to be F (u)x+F (v)y, where u : i→ k and v : j → k. The forgetful functors
Ring → Ab, R-Mod → Grp, Grp → Set commute with small filtered colimits.
Compare with Warning 1.3.27.

Proposition 1.6.26. Small filtered colimits in R-Mod are exact. In other words,
for any small filtered category I, the functor colim: R-ModI → R-Mod is exact.

Proof. Since colim is a left adjoint functor, it is right exact. It remains to check that
colim preserves monomorphisms. Let f : F → G be a monomorphism in R-ModI .
Let [x] ∈ ker(colim f) be the equivalence class of x ∈ F (i). Then [fi(x)] = 0, so
that there exists u : i → j such that fjF (u)(x) = G(u)fi(x) = 0. Since fj is a
monomorphism, we have F (u)(x) = 0, so that [x] = 0.

One can also deduce the above from the following.

Proposition 1.6.27. Small filtered colimits in Set are exact. In other words, for
any small filtered category I, any finite category J , and any functor F : I×J → Set,
the map

colim
i∈I

lim
j∈J

F (i, j)→ lim
j∈J

colim
i∈I

F (i, j)

is a bijection.
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It follows from the proposition that the same holds for Grp and Ring.

Proof. Since any finite limit is an equalizer of finite products (Remark 1.6.2), it
suffices to show that colimI preserves equalizers and finite products.

Let (f, g) : G⇒ H be morphisms in SetI . We show that the map

ϕ : colim
i∈I

eq(f(i), g(i))→ eq(colim f, colim g)

is bijective. Let [x] and [y] be elements of the left-hand side, x ∈ eq(f(i), g(i)),
y ∈ eq(f(j), g(j)) such that ϕ([x]) = ϕ([y]). Then there exist u : i → k, v : j →
k such that G(u)(x) = G(v)(y). Thus [x] = [y] in colimi∈I eq(f(i), g(i)). This
proves that ϕ is injective (in fact this is equivalent to the fact that colim preserves
monomorphisms, which can be proved similarly to Proposition 1.6.26).

Consider an element [x] of the right-hand side, equivalence class of an element
x of G(i) such that f(i)(x) ∼ g(i)(x). In other words, there exists u, v : i⇒ j, such
that H(u)(f(i)(x)) = H(v)(g(i)(x)). Since I is filtered, there exists w : j → k such
that wu = wv. Since

f(i)G(wu)(x) = H(wu)f(i)(x) = H(wv)(g(j)(x)) = g(k)H(wv)(x),

we have G(wu)(x) ∈ eq(f(k), g(k)). Then ϕ([G(wu)(x)]) = [x]. This proves that ϕ
is surjective.

Similarly, one proves that colimI preserves finite products.

Sheaves
Let X be a small topological space. Let Open(X) be the set of open subsets of X,
ordered by inclusion.

Definition 1.6.28. A sheaf of abelian groups on X is a functor F : Open(X)op →
Ab satisfying the following gluing condition: for every open covering (Ui)i∈I of an
open subset U , the restriction maps F(U) → F(Ui) induce a bijection from F(U)
to the equalizer of the maps

(1.6.1)
∏
i∈I
F(Ui) ⇒

∏
i,j∈I
F(Ui ∩ Uj),

induced by the restriction maps F(Ui)→ F(Ui∩Uj) and F(Uj)→ F(Ui∩Uj). The
category Fun(Open(X)op,Ab) is called the category of presheaves. The category
Shv(X) of sheaves of abelian groups on X is the full subcategory spanned by sheaves
of abelian groups on X.

The category Shv(X) is stable under small limits in Fun(Open(X)op,Ab)). In
particular, Shv(X) admits small limits. The inclusion functor ι admits a left adjoint
a, called the sheafification functor, with (aF)(U) given by the colimit indexed by
Cov(U) of the equalizer of (1.6.1). Here Cov(U) denotes the set of open coverings
of U , with U ≤ U ′ if U ′ refines U . Since Cov(U) is filtered, a is exact. The category
Shv(X) also admits small colimits, given by colimiFi = a colimi ιFi. It is clear that
Shv(X) is an abelian category (the exactness of a is used in (AB2)).
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Example 1.6.29. LetX be a complex manifold. We have an epimorphism exp: O →
O× of sheaves on X, where O(U) is the additive group of holomorphic functions on
U and O× is the multiplicative group of nowhere-vanishing holomorphic functions
on U . As a morphism of presheaves, exp is not an epimorphism in general (for
example if X = C−{0}, then the function z 7→ z is not in the image of exp). How-
ever, for any f ∈ O×(U), and any point x ∈ U , there exists an open neighborhood
x ∈ V ⊆ U such that f |V is in the image of exp.

Diagram lemmas
Let A be an abelian category.
Proposition 1.6.30 (Snake lemma). Consider a commutative diagram in A with
exact rows
(1.6.2) X ′ //

u′

��

X //

u
��

X ′′ //

u′′

��

0

0 // Y ′ // Y // Y ′′.

There exists a unique morphism v : X ×X′′ ker(u′′)→ Y ′ making the diagram

X ×X′′ ker(u′′) p1 //

v
��

X

u

��
Y ′ // Y

commute and a unique morphism δ : ker(u′′)→ coker(u′) making the diagram

X ×X′′ ker(u′′) p2 //

v

��

ker(u′′)
δ
��

Y ′ // coker(u′)
commute. Here p1 and p2 are the projections. Moreover, the sequence

(1.6.3) ker(u′)→ ker(u)→ ker(u′′) δ−→ coker(u′)→ coker(u)→ coker(u′′)
is exact.
Proof. By the Freyd–Mitchell theorem, we may work in a module category and take
elements. Let a ∈ ker(u′′) and let b ∈ X be a preimage. Then the image of u(b) in
Y ′′ is u′′(a) = 0, so that u(b) is the image of c ∈ Y ′. We define δ(a) to be the class
of c in coker(u′), as shown by the diagram:

a_

��
b � //
_

��

a_

��
c � //
_

��

u(b) � // 0

δ(a)
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It is easy to check that the assertions of the proposition.

For a direct (but tedious) proof of the snake lemma without diagram-chasing, we
refer to [KS2, Lemma 12.1.1]. It is also possible to give a proof by diagram-chasing
yet not relying on the Freyd–Mitchell theorem, by introducing a notion of members
as substitutes for elements [ML2, Section VIII.4].

Remark 1.6.31. If the upper row of (1.6.2) is a short exact sequence, then the
sequence (1.6.3) extends to an exact sequence 0→ ker(u′)→ ker(u). Dually, if the
lower row of (1.6.2) is a short exact sequence, then the sequence (1.6.3) extends to
an exact sequence coker(u)→ coker(u′′)→ 0.

Corollary 1.6.32. Under the assumptions of Proposition 1.6.30,
(1) if u′ and u′′ are monomorphisms, then u is a monomorphism;
(2) if u′ and u′′ are epimorphisms, then u is an epimorphism;
(3) if u′ and u′′ are isomorphisms, then u is an isomorphism;
(4) if u′ is an epimorphism and u is a monomorphism, then u′′ is a monomor-

phism.
(5) if u′′ is a monomorphism and u is an epimorphism, then u′ is an epimorphism.

Remark 1.6.33. In case (3) of the corollary, the two rows of 1.6.2 are short exact
sequences. Note that given short exact sequences 0 → X ′ → X → X ′′ → 0,
0→ Y ′ → Y → Y ′′ → 0, with X ′ ≃ Y ′ and X ′′ ≃ Y ′′, it is in general not true that
X ≃ Y . The existence of a morphism X → Y compatible with the isomorphisms
X ′ ≃ Y ′ and X ′′ ≃ Y ′′ is crucial to the conclusion of case (3).

Corollary 1.6.34. Let 0 → X ′ f−→ X
g−→ X ′′ → 0 be a short exact sequence in A.

Then the following conditions are equivalent:
(1) f admits a retraction: there exists r : X → X ′ such that rf = idX′.
(2) g admits a section: there exists s : X ′′ → X such that gs = idX′′.
(3) The sequence is isomorphic (as an object of A•→•→•) to the short exact se-

quence 0 → X ′ i−→ X ′ ⊕ X ′′ p−→ X ′′ → 0, where i and p are the canonical
morphisms.

Proof. (3) =⇒ (1). Clear.
(1) =⇒ (3). We have a commutative diagram

0 // X ′ f // X
g //

(r,g)
��

X ′′ // 0

0 // X ′ // X ′ ⊕X ′′ // X ′′ // 0.

By Corollary 1.6.32, (r, g) is an isomorphism.
(2)⇐⇒ (3). This follows by duality.

Definition 1.6.35. A short exact sequence satisfying the above equivalent condi-
tions is said to be split.

Remark 1.6.36. Any additive functor preserves split short exact sequences.
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Corollary 1.6.37 (Four lemma). Consider a commutative diagram in A

X0 //

u0
��

X1 //

u1
��

X2 //

u2
��

X3

u3
��

Y 0 // Y 1 // Y 2 // Y 3

with exact rows.
(1) If u0 is an epimorphism, u1 and u3 are monomorphisms, then u2 is a monomor-

phism.
(2) If u3 is a monomorphism, u0 and u2 are epimorphisms, then u1 is an epimor-

phism.

Proof. The diagram can be decomposed into commutative diagrams with exact rows

X0 A1 0 0 A1 X1 A2 0

Y 0 B1 0 0 B1 Y 1 B2 0

0 A2 X2 A3 0 0 A3 X3

0 B2 Y 2 B3 0 0 B3 Y 3

u0 v1 v1 u1 v2

v2 u2 v3 v3 u3

Since u0 is an epimorphism, so is v1. Since u3 is a monomorphism, so is v3. In the
case of (1), v2 is a monomorphism and hence so is u2 by Corollary 1.6.32. Assertion
(2) follows by duality.

Corollary 1.6.38 (Five lemma). Consider a commutative diagram in A

X0 //

u0
��

X1 //

u1
��

X2 //

u2
��

X3

u3
��

// X4

u4
��

Y 0 // Y 1 // Y 2 // Y 3 // Y 4

with exact rows. If u0 is an epimorphism, u4 is a monomorphism, and u1, u3 are
isomorphisms, then u2 is an isomorphism.

Proof. By the four lemma, u2 is a monomorphism and an epimorphism.
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Corollary 1.6.39 (Nine lemma). Consider a commutative diagram in A
0

��

0

��

0

��
0 // X ′ //

��

X //

��

X ′′ //

��

0

0 // Y ′ //

��

Y //

��

Y ′′ //

��

0

0 // Z ′ //

��

Z //

��

Z ′′ //

��

0

0 0 0
with exact columns. If the top two rows or the bottom two rows are exacts, then all
the three rows are exact.

The diagram in the nine lemma (commutative with exact rows and columns) is
called a nine-diagram.

Proof. It suffices to apply the snake lemma to the top two rows in the first case,
and the bottom two rows in the second case.
Remark 1.6.40. If the top and bottom rows are exact, then the middle row is not
exact in general. (The claim of [ML2, Section VIII.4, Exercise 5 (c)] is mistaken.)
Indeed, if f : Y → X is a nonzero morphism, then

0

��

0

��

0

��
0 // 0 //

��

X
idX //

(idX ,0)
��

X //

idX

��

0

0 // Y
(f,idY )//

idY

��

X ⊕ Y pX //

pY

��

X //

��

0

0 // Y
idY //

��

Y //

��

0 //

��

0

0 0 0
provides a counterexample. Here pX and pY are projections. By contrast, if, more-
over, the composition of Y ′ → Y → Y ′′ is zero, then the middle row is exact by
Proposition 2.1.13.
Remark 1.6.41. Every commutative square with exact rows and columns

0 0

X X ′′ 0

Y Y ′′ 0
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extends to a nine diagram uniquely up to isomorphism. A commutative square with
exact rows and columns

0 0

0 X ′ X

0 Y ′ Y

extends to a nine diagram if and only if the square is a pullback (Exercise).

1.7 Projective and injective objects
Definition 1.7.1. Let C be a category. An object P of C is said to be projective if
given a morphism f and an epimorphism u in C as shown in the diagram

(1.7.1) P

f
��

g

~~
X u // Y,

there exists g rendering the diagram commutative. Dually, an object I of C is said
to be injective if given a morphism f and a monomorphism u in C as shown in the
diagram

X
u //

f
��

Y

g
��

I,

there exists g rendering the diagram commutative.

Remark 1.7.2. An object I is injective in C if and only if it is projective in Cop.

Note that we do not require uniqueness of the dotted arrow. By definition, an
object P of C is projective if and only if for every epimorphism u : X → Y in C, the
induced map HomC(P,X)→ HomC(P, Y ) is a surjection. Dually, an object I of C is
injective if and only if for every monomorphism u : X → Y in C, the induced map
HomC(Y, I)→ HomC(X, I) is a surjection. We obtain the following.

Proposition 1.7.3. Let A be an abelian category with small Hom sets. An object
P is projective if and only if the functor HomA(P,−) : A → Ab is exact. An object
I is injective if and only if the functor HomA(−, I) : Aop → Ab is exact.

Proposition 1.7.4. Let A be an abelian category. An object P is projective if and
only if every epimorphism f : M → P admits a section. An object I is injective if
and only if every monomorphism g : I →M admits a retraction.

The “only if” parts hold in any category.
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Proof. By duality, it suffices to prove the first assertion. If P is projective, applying
the definition to the diagram

P

~~
M

f // P,

we obtain a section of f . Conversely, given the diagram (1.7.1), we form the pullback
square

M
v //

p
��

P

f
��

X
u // Y.

Since v is an epimorphism (Exercise), it admits a section s : P → M and we take
g = ps.

Corollary 1.7.5. Let A be an abelian category. The following conditions are equiv-
alent:

(1) Every object of A is projective.
(2) Every object of A is injective.
(3) Every short exact sequence in A is split.

Note that A satisfies the above conditions if and only if Aop does. Compare with
Example 1.7.9 below.

Remark 1.7.6. If A is a category satisfying the conditions of Corollary 1.7.5, then
any additive functor F : A → B is exact.

Example 1.7.7. Recall that a ring R is called semisimple if it satisfies the following
equivalent conditions:

(1) The (left) R-module R is semisimple;
(2) Every (left) R-module is semisimple;
(3) (Artin–Wedderburn) R is isomorphic to a finite product of matrix rings Mn(D)

over division rings D.
Note that by Condition (3), R is semisimple if and only if Rop is semisimple. Recall
that an R-module M is called semisimple if every submodule is a direct summand.
Thus, by Condition (2), that R is a semisimple ring is further equivalent to the
conditions of Corollary 1.7.5 for A = R-Mod.

Proposition 1.7.8. Let F : C → D be a functor.
(1) If F admits a right adjoint G that carries epimorphisms to epimorphisms, then

F carries projective objects to projective objects.
(2) If F admits a left adjoint G that carries monomorphisms to monomorphisms,

then F carries injective objects to injective objects.

In particular, if F is a functor between abelian categories admitting an exact right
(resp. left) adjoint, then F carries projective (resp. injective) objects to projective
(resp. injective) objects.
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Proof. By duality it suffices to prove (1). Let P be a projective object of C and let
u : X → Y be an epimorphism in D. We have a commutative diagram

HomC(FP,X)
≃
��

u◦− // HomC(FP, Y )
≃
��

HomD(P,GX) Gu◦− // HomD(P,GY ).

By assumption, Gu is an epimorphism, so that the lower row is a surjection. It
follows that the upper row is also a surjection.

Example 1.7.9. In Set, every object is projective. Every nonempty set is injective.
The empty set is not injective. ([HS, Proposition II.10.1] is inaccurate.)

Example 1.7.10. Let R be a ring. The free module functor F : Set → R-Mod is
a right adjoint to the forgetful functor U : R-Mod→ Set. Since U carries epimor-
phisms to epimorphisms, F carries projective objects to projective objects. Thus
every free module is projective.

Note that every R-module is the quotient of a free R-module. Indeed, the ad-
junction map FUM →M is clearly surjective. Thus every R-module is the quotient
of a projective R-module. We will see later that the dual of this statement also holds.

Remark 1.7.11. Consider a family of objects (Xi)i∈I of a category C.
(1) If each Xi is projective and the coproduct ∐i∈I Xi exists, then the coproduct

is projective.
(2) Dually, if each Xi is injective and the product ∏i∈I Xi exists, then the product

is injective.

Remark 1.7.12. An object Y equipped with morphisms s : Y → X and r : X → Y
such that rs = idY is called a retract of X. A retract of a projective (resp. injective)
object is projective (resp. injective). In particular, a direct summand of a projective
(resp. injective) object in an additive category is projective (resp. injective).

1.8 Projective and injective modules
Let R be a ring. As before, we will concentrate of left R-modules. Right R-modules
can be identified with left Rop-modules. This duality is not to be confused with
the duality between a category and its opposite: The opposite of R-Mod is not
equivalent to a module category in general8.

Projective modules
Proposition 1.8.1. Let P be an R-module. The following conditions are equivalent:

(1) P is projective.
(2) P is a direct summand of some free R-module.

8We have seen that in R-Mod small filtered colimits are exact, but limits indexed by Iop with
I small and filtered are not exact in general.
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Proof. (1) =⇒ (2). Let F be a free R-module equipped with a surjective homomor-
phism f : F → P . By Proposition 1.7.4, the short exact sequence 0 → ker(f) →
F → P → 0 splits.

(2) =⇒ (1). This follows from Remarks 1.7.11 and Example 1.7.10.

The same proof gives the following.
Proposition 1.8.2. Let P be an R-module. The following conditions are equivalent:

(1) P is finitely-generated and projective.
(2) P is a direct summand of some Rn.

Example 1.8.3. The (Z/6Z)-module Z/2Z is projective, but not free. The (Z/4Z)-
module Z/2Z is not projective.
Definition 1.8.4. (1) A ring R is said to be left hereditary if every left ideal of

R is projective as an R-module.
(2) A ring R is said to be left semi-hereditary if every finitely generated left ideal

of R is projective as an R-module.
Similarly one defines right hereditary rings and right semi-hereditary rings using

right ideals. A ring R is a right hereditary (resp. semi-hereditary) ring if and only
if Rop is a left hereditary (resp. semi-hereditary) ring. For commutative rings, we
drop the words “left” and “right”.
Remark 1.8.5. Recall that a ring is left Noetherian if and only if every left ideal is
finitely generated. Thus a left Noetherian left semi-hereditary ring is left hereditary.
Theorem 1.8.6 (Kaplansky). Let R be a left hereditary ring. Then any submodule
P of a free R-module F = ⊕

α∈I Reα is isomorphic to a direct sum of left ideals of
R; in particular, P is a projective module.

Proof. Choose a well-order on I. For each α ∈ I, let

F<α =
∑
β<α

Reβ, F≤α =
∑
β≤α

Reβ.

Let P<α = P ∩ F<α and P≤α = P ∩ F≤α. Consider the homomorphism

fα : P≤α ⊆ F → R

carrying ∑β∈I rβeβ to rα. We have ker(fα) = P<α. Since im(fα) is a left ideal of R,
it is projective, so that we have

P≤α = P<α ⊕Qα,

where Qα is an R-submodule of P≤α such that f |Qα induces an isomorphism Qα
∼−→

im(fα).
Let us show P = ⊕

α∈I Qα. Suppose we have aα1 + · · ·+ aαn = 0 with aαi
∈ Qαi

for i = 1, . . . , n. We may assume that α1 < · · · < αn. Then aα1 , . . . , aαn−1 ∈ P<αn ,
so that aαn ∈ P<αn ∩Qαn = 0. By induction we have aαi

= 0 for all i.
It remains to show that P = ∑

α∈I Qα. Assume the contrary. Since P =⋃
α∈I P≤α, there exists a smallest β ∈ I and a ∈ P≤β such that a ̸∈ Q = ∑

α∈I Qα.
Write a = b + c, where b ∈ P<β and c ∈ Qβ. We have b ∈ P≤γ for some γ < β. By
the minimality of β, we have b ∈ Q. Then a = b+ c ∈ Q, Contradiction.
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Corollary 1.8.7. Let R be a left hereditary ring. An R-module is projective if and
only if it is a submodule of a free R-module.

Proof. The “if” part follows from the theorem. The “only if” part follows from
Proposition 1.8.1.

Corollary 1.8.8. Let R be a ring. The following conditions are equivalent:
(1) R is left hereditary;
(2) Submodules of free R-modules are projective;
(3) Submodules of projective R-modules are projective.

Proof. By Theorem 1.8.6, (1) =⇒ (2). By definition, (2) =⇒ (1). By Proposition
1.8.1, (2)⇐⇒ (3).

For left semi-hereditary rings, we have the following variant of Theorem 1.8.6.

Theorem 1.8.9. Let R be a left semi-hereditary ring. Then any finitely generated
submodule P of a free R-module F = ⊕

α∈I Reα is isomorphic to a finite direct sum
of finitely generated left ideals of R; in particular, P is a projective module.

Proof. There exists a finite subset J ⊆ I such that P is contained in FJ = ⊕
α∈J Reα.

Up to replacing F by FJ , we may assume that I is finite. In this case, we can repeat
the proof of Theorem 1.8.6, noting that im(fα) is finitely generated.

Corollary 1.8.10 (Albrecht). Let R be a ring. The following conditions are equiv-
alent:

(1) R is left semi-hereditary;
(2) Finitely generated submodules of free R-modules are projective;
(3) Finitely generated submodules of projective R-modules are projective.

Proof. Similar to the proof of Corollary 1.8.8.

Warning 1.8.11. Following [L1], in these lectures a domain is a nonzero ring, not
necessarily commutative, where 0 is the only zero-divisor.

Definition 1.8.12. (1) A hereditary commutative domain is called a Dedekind
domain (or Dedekind ring).

(2) A PLID (principal left ideal domain) is a domain in which every left ideal is
principal. Similarly one defines PRID using right ideals.

(3) A commutative PLID is called a PID (principal ideal domain).
(4) A semi-hereditary commutative domain is called a Prüfer domain.
(5) A Bézout domain is a commutative domain in which every finitely generated

left ideal is principal.

Some authors exclude fields from the definition of Dedekind domain.

Remark 1.8.13. (1) A principal left ideal of a domain is free. Thus a PLID is left
hereditary. Similarly, a Bézout domain is Prüfer. An ideal I of a commutative
domain is principal if and only if it is free.

(2) PIDs are exactly Noetherian Bézout domains.
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Corollary 1.8.14. Let R be PLID. Then any submodule of a free R-module is free.
Moreover, an R-module is free if and only if it is projective.

Proof. The first assertion follows from Kaplansky’s theorem. The second assertion
follows from the first one and Proposition 1.8.1.

Definition 1.8.15. An ideal I of a commutative domain R is called invertible if
there exists an R-submodule of M of the quotient field K of R such that IM = R.

The condition implies that 1 = ∑n
i=1 aiqi with ai ∈ I, qi ∈ M . Then any b ∈ I

satisfies b = ∑n
i=1 aiqib with qib ∈ IM = R. Thus invertible ideals are finitely

generated.

Proposition 1.8.16. A nonzero ideal I of a commutative domain R is invertible if
and only if it is projective as an R-module.

Thus a Dedekind domain is a commutative domain of which every nonzero ideal
is invertible.

Proof. Let I be an invertible ideal with IM = R. Then 1 = ∑n
i=1 aiqi with ai ∈

I, qi ∈ M . Consider the free R-module F = ⊕n
i=1 Rei. Let f : F → I be the

homomorphism such that f(ei) = ai. Then s : I → F given by s(a) = ∑n
i=1 aqiei is

a section of f . Thus I is a direct summand of F , and hence projective.
Conversely, let I be an ideal of R that is projective as an R-module. Then

there exists a free R-module F = ⊕
α∈J Reα and homomorphisms f : F → I and

s : I → F with fs = idI . Put aα = f(eα). Let a ∈ I with a ̸= 0. By the following
lemma, s(a) = ∑

α∈J aqαeα, where qα ∈ K = Frac(R) (zero for all but finitely
many α ∈ J) satisfies qαI ⊆ R. Take M = ∑

α∈J Rqα. Then IM ⊆ R. Moreover,
a = fs(a) = ∑

α∈J aqαaα, so that 1 = ∑
α∈J aαqα ∈ IM . It follows that IM = R.

Lemma 1.8.17. Let s : I → R be a homomorphism of R-modules. Then there exists
q ∈ K = Frac(R) such that s(a) = qa for all a ∈ I.

Proof. For a, b ∈ I, bs(a) = s(ab) = as(b). Thus q = s(a)/a does not depend on the
choice of a ∈ I, a ̸= 0.

Corollary 1.8.18. An ideal of a Prüfer domain is projective if and only if it is
finitely generated.

Proof. The “if” part is the definition and the only if part follows from the proposi-
tion.

Corollary 1.8.19. Dedekind domains are exactly Noetherian Prüfer domains.

We refer the reader to standard textbooks on commutative algebra for other
characterizations of Dedekind domains.

Example 1.8.20. Every field is a PID. More generally, every division ring is a
PLID.

Example 1.8.21. The ring of rational integers Z is a PID. For any field k, the
polynomial ring k[x] and the ring k[[x]] of formal power series are PIDs. For any
division ring D, D[x] is a PLID (and a PRID).
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Example 1.8.22. The ring of Gaussian integers Z[
√
−1] is a PID. R = Z[

√
−5] is

a Dedekind domain, but not a PID: the ideal (2, 1 +
√
−5) is not principal. As an

R-module, this ideal is projective but not free.
More generally, for a square-free integer a ̸= 0, 1, R = Z[

√
a] is a Dedekind

domain if and only if a ≡ 2, 3 (mod 4). The only negative square-free integers a for
which R = Z[

√
a] is a PID are a = −1 and a = −2. The last statement was part

of Gauss’s class number problems for quadratic fields and was proven by Landau in
1902. It is not known whether there are infinitely many positive square-free integers
a for which R = Z[

√
a] is a PID.

Example 1.8.23. Every semisimple ring R is left (and right) hereditary.

Example 1.8.24. If R and S are Morita equivalent rings, namely if the categories
R-Mod and S-Mod are equivalent, then R is left (resp. right) hereditary if and
only if S is left (resp. right) hereditary. In particular, if R is a Dedekind domain,
then Mn(R) is left (and right) hereditary.

Example 1.8.25. A commutative domain R such that for every 0 ̸= x ∈ Frac(R)
either x ∈ R or x−1 ∈ R is called a valuation ring. A valuation ring is a Bézout
domain. For any field k, the valuation ring ⋃∞

n=1 k[[x1/n]] is not Noetherian.

Example 1.8.26. The free algebra R = k⟨Xi⟩i∈I over a field k generated by a set
I of variables is a left (and right) hereditary domain (in fact any left ideal of R is
free [C, Corollary II.4.3]), but not left (or right) Noetherian for #I > 1.

Example 1.8.27. A ring R is said to be von Neumann regular if for each r, there
exists s ∈ R such that rsr = r; Boolean if r2 = r for all r ∈ R. Boolean rings are
von Neumann regular (by taking s = 1). Countable von Neumann regular rings are
hereditary [L1, Example 2.32 (e)]. The countable Boolean ring R = {f : N → F2 |
f−1(0) or f−1(1) is finite} is hereditary, but not Noetherian.

Example 1.8.28. The commutative domain Z[
√
−3] is not a Dedekind domain. In-

deed, the ideal (2, 1+
√
−3) is not invertible. The commutative domain Z[x1, . . . , xn]

is not a Dedekind domain for n ≥ 1. Indeed the ideal (2, x1) is not invertible. The
commutative domain k[x1, . . . , xn] is not a Dedekind domain for n ≥ 2. Indeed, the
ideal (x1, x2) is not invertible. These rings are not semi-hereditary. However, we
have the following deep result.

Theorem 1.8.29 (Quillen, Suslin). Let R be a PID and let S = R[x1, . . . , xn]. Then
every projective S-module is free.

The theorem was proved independently by Quillen and Suslin in 1976. The
question (for R a field and finitely-generated modules) was first raised by Serre. See
[L2] for an exposition.

Remark 1.8.30. Kaplansky and later Small constructed examples of right heredi-

tary rings that are not left hereditary. Small’s example is
(
Z Q
0 Q

)
. See [L1, Section

2F].
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Remark 1.8.31. Recall that a direct sum of projective modules is projective. On
the other hand, an infinite product of projective modules is not necessarily projective.
For example, the product ZN of countably many copies of Z is not a projective Z-
module (Baer, Exercise).

Injective modules
Theorem 1.8.32 (Baer’s test). Let R be a ring. An R-module I is injective if and
only if for every left ideal A, every homomorphism A → I extends to a homomor-
phism R→ I:

A �
� //

��

R

��
I.

Proof. The “only if” part follows from the definition. To show the “if” part, consider
an injective homomorphism u : X → Z and a homomorphism f : X → I. To simplify
notation, we consider u as the inclusion of a submodule. We look at the set S of
pairs (Y, g), where X ⊆ Y ⊆ Z and g : Y → I extends f . We equip S with the
following order: (Y, g) ≤ (Y ′, g′) if and only if Y ⊆ Y ′ and g′ extends g. Every chain
{(Yα, gα)} in S admits the upper bound (Y, g), where Y = ⋃

α Yα and g : Y → I
the unique homomorphism extending all the gα. By Zorn’s lemma, there exists a
maximal element (Y0, g0) in S. It suffices to show that Y0 = Z. Assume the contrary.
Then there exists z ∈ Z such that z ̸∈ Y0. Consider the left ideal A of R consisting
of r ∈ R such that rz ∈ Y0. By assumption, the homomorphism h0 : A → I given
by h0(r) = g0(rz) extends to a homomorphism h1 : R → I. Then g0 extends to
g1 : Y1 = Y0 + Rz → I by g1(y + rz) = g0(y) + h1(r). It is easy to check that g1 is
well-defined. Then (Y0, g0) < (Y1, g1), contradicting the maximality of (Y0, g0).

Definition 1.8.33. Let R be a domain. We say that an R-module D is divisible if
for every d ∈ D and every nonzero r ∈ R, there exists c ∈ D such that rc = d.

Note that we do not require the uniqueness of c.

Remark 1.8.34. Any quotient of a divisible R-module is divisible. Any direct sum
of divisible R-modules is divisible. Any product of divisible R-modules is divisible.

Proposition 1.8.35. Let R be a domain. Then every injective R-module is divisible.
Moreover, if R is a PLID or a Dedekind domain, then an R-module is injective if
and only if it is divisible.

Proof. Let I be an injective R-module. Let d ∈ I and r ∈ R, r ̸= 0. Since R is
a domain, the homomorphism of R-modules m : R → R defined by m(s) = sr, is
injective. Let f : R → I be the homomorphism carrying 1 to d. Then there exists
g : R→ I such that f = gm. Then d = f(1) = gm(1) = g(r) = rg(1).

Assume that R is a PLID and let D be a divisible R-module. We apply Baer’s
test. Consider a left ideal A of R and a homomorphism f : A → D. Since R is a
PLID, A is a principal left ideal: A = Ra. Since D is divisible, there exists c ∈ D
such that f(a) = ac. Then f extends to g : R→ D given by g(r) = rc.
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Assume now that R is a Dedekind domain and let D be a divisible R-module. We
apply Baer’s test. Consider a nonzero ideal A of R and a homomorphism f : A→ D.
Since R is a Dedekind domain, A is invertible: 1 = ∑n

i=1 aiqi with ai ∈ A, qi ∈ K =
Frac(R), qiA ⊆ R. Since D is divisible, there exists ci ∈ D such that aici = f(ai).
Then, for all a ∈ A,

f(a) = f(
n∑
i=1

aiqia) =
n∑
i=1

qiaf(ai) = a
n∑
i=1

qiaici.

Thus f extends to g : R→ D given by g(r) = rc where c = ∑n
i=1 qiaici.

Corollary 1.8.36. If R is a PLID or a Dedekind domain, then quotients of injective
R-modules are injective and direct sums of injective R-modules are injective.

Example 1.8.37. Let R = Z. Then Q and Q/Z are divisible and hence injective.
The following modules are not divisible or injective: Z, Z/nZ for n ≥ 2.

The following dual of Corollary 1.8.8 generalizes the first assertion of Corollary
1.8.36.

Proposition 1.8.38 (Cartan–Eilenberg). A ring R is left hereditary if and only if
quotients of injective R-modules are injective.

We will deduce this later from general facts on homological dimensions. It is not
hard to give a direct proof. See for example [CE, Theorem I.5.4] or [L1, Theorem
3.22].

Corollary 1.8.39. Let R be a domain. If every divisible R-module is injective, then
R is left hereditary.

Example 1.8.40. Let R = Z[x] and let K = Q(x) be the fraction field of R. Then
the R-module M = K/R is divisible but not injective. Indeed, the homomorphism
A = 2R + xR → M carrying 2 to 0 and x to the class of 1/2 does not extend to a
homomorphism R→M .

Remark 1.8.41. Recall that a product of injective R-modules is injective. On the
other hand, a direct sum of injective R-module is not necessarily injective. In fact,
a ring R is left Noetherian if and only if direct sums of injective R-modules are
injective. The “only if” part follows easily from Baer’s test (Exercise)9 The “if”
part is a theorem of Bass and Papp (see [L1, Theorem 3.46] for a proof and other
equivalent conditions). Thus, if R is a domain such that every divisible R-module
is injective, then R is left Noetherian.

We refer the reader to [L1, Section 3C] for a more general discussion on the
relation between injectivity and divisibility when R is not necessarily a domain.

9This part was known to Cartan and Eilenberg [CE, Exercise VII.8].
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Enough injective modules
Proposition 1.8.42. Any Z-module (i.e. abelian group) M can be embedded into a
divisible, and hence injective, Z-module.

Proof. We have M = F/H with F free. Embedding F into a Q-vector space V , we
get M ⊆ V/H. Since V is divisible as a Z-module, V/H is divisible.

Remark 1.8.43. We will see later that every Z-module can be embedded into a
product of Q/Z (such a product is sometimes called “cofree”).

Remark 1.8.44. Let R→ S be a ring homomorphism. The functor

HomR(S,−) : R-Mod→ S-Mod

is a right adjoint to the restriction of scalars functor S-Mod → R-Mod, which
is exact. It follows that HomR(S,−) carries injective R-modules to injective S-
modules.

Proposition 1.8.45. Let R be a ring. Any R-module M can be embedded into an
injective R-module.

Proof. We embed the underlying Z-module of M into an injective Z-module I. Then
HomZ(R, I) is an injective R-module and we have injective homomorphisms

M ≃ HomR(R,M) ↪→ HomZ(R,M) ↪→ HomZ(R, I).

Self-injective rings
Definition 1.8.46. We say that a ring R is left self-injective if the left R-module
R is injective.

Similarly one defines right self-injective rings. There are left self-injective rings
that are not right self-injective [L1, Example 3.74B]. However we have the following
theorem.

Theorem 1.8.47 (Faith–Walker). Let R be a ring. The following conditions are
equivalent.

(1) R is left Noetherian and left self-injective;
(2) Every projective R-module is injective;
(3) Every injective R-module is projective.

Moreover, R satisfies the above conditions if and only if Rop satisfies the above
conditions.

By Remark 1.8.41, we have (1) =⇒ (2) and (2) + (3) =⇒ (1) (the latter follows
from the theorem of Bass and Papp). The other parts of Theorem 1.8.47 are harder.
We refer the reader to [F, Chapter 24] for a proof.

Definition 1.8.48. A ring R is called quasi-Frobenius if it satisfies Condition (1)
of the above theorem.
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Definition 1.8.49. Let k be a field. A Frobenius k-algebra A is a finite-dimensional
k-algebra equipped with a k-linear form tr : A→ k such that the pairing

A× A→ k

(a, b) 7→ tr(ab)

is nondegenerate.

The nondegeneracy means that the homomorphism of A-modules

A→ Homk-Mod(A, k)
b 7→ (a 7→ tr(ab))

is an injection, and hence an isomorphism for dimension reasons. By Remark 1.8.44,
Homk-Mod(A, k) is an injective R-module. Thus A is a self-injective ring. Moreover,
since dimk(A) is finite, A is an Artinian ring. We have proved the following.

Proposition 1.8.50. Every Frobenius k-algebra A is a quasi-Frobenius ring.

Example 1.8.51. For any field k and any finite group G, the group algebra k[G] is
a Frobenius k-algebra, with trace map given by ∑g∈G agg 7→ a1. In particular, k[G]
is a quasi-Frobenius ring. This fact is especially useful when the characteristic of k
divides the order of G (otherwise k[G] is a semisimple ring by Maschke’s theorem).

Proposition 1.8.52. Let R be a PLID and let a ∈ R such that Ra = aR and a ̸= 0.
Then R/aR is quasi-Frobenius. In particular, the quotient of any PID by a proper
ideal is quasi-Frobenius.

Proof. The ring R/Ra is clearly left Noetherian. We apply Baer’s test to show that
it is left self-injective. Let A be an ideal of R/Ra and let h : A → R/Ra be a
homomorphism. Since R is a PLID, A has the form Rb/Ra. Set h(b̄) = r̄ for some
r ∈ R, where r̄ denotes the image of r in R/Ra. We have Ra ⊆ Rb, so that a = cb
for some nonzero c ∈ R. We have 0̄ = h(ā) = h(c̄b̄) = c̄r̄. Since Ra = aR, it follows
that cr = as = cbs for some s ∈ R. Canceling c, we get r = bs, so h(b̄) = b̄s̄. Thus
h extends to the homomorphism R/Ra→ R/Ra carrying 1̄ to s̄.

Example 1.8.53. For m ̸= 0, the ring Z/mZ is quasi-Frobenius. For any field k
and any nonzero f ∈ k[x], the ring k[x]/(f) is quasi-Frobenius.

1.9 Flat modules
Let R be a ring. For any left R-module L and right R-module M , the functors L⊗R−
and − ⊗R M are left adjoint functors, and hence commute with small colimits. In
particular, they are right exact.

Definition 1.9.1. A left R-module M is said to be flat if the functor

−⊗RM : Mod-R→ Ab

is exact. A right R-module L is said to be flat if the functor L⊗R − is exact.
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Remark 1.9.2. A right R-module is flat if and only if the corresponding left Rop-
module is flat.

Remark 1.9.3. Flat R-modules are stable under direct sums, direct summands,
and filtered colimits. To see the stability under filtered colimits, let I be a filtered
category and let M : I → R-Mod be a functor such that M(i) is flat for every object
i of I. Since filtered colimits in Ab are exact, the functor − ⊗ colimi∈IM(i) ≃
colimi∈I(−⊗M(i)) is exact. In other words, colimM is flat.

Lemma 1.9.4. Every projective R-module is flat.

Proof. The R-module R is flat as − ⊗R R is the identity functor. Free R-modules
are direct sums of copies of the R-module R, and hence are flat. Every projective
R-module is a direct summand of a free R-module, and hence is flat.

The converse does not hold. Indeed, projective R-modules are not stable under
filtered colimits.

Example 1.9.5. Q = colimn∈N×
1
n
Z, where N× denotes the set of positive integers,

ordered by divisibility, is filtered colimit of free Z-modules and hence a flat Z-module.
On the other hand, Q is not a free Z-module, or, equivalently, not a projective Z-
module.

We will later show that flatness is equivalent to projectivity under a finiteness
condition, which implies the following.

Theorem 1.9.6 (Lazard, Govorov). Every flat R-module is a filtered colimit of free
R-modules.

We refer the reader to [L1, Theorem 4.34] for a proof.

Torsion-free modules
Definition 1.9.7. Let R be a ring and let M be a left R-module. We say that M
is torsion-free if rm = 0 for r ∈ R and m ∈ M implies that r is a left zero-divisor
or m = 0. (In the case where R is a domain, the condition is that rm = 0 implies
r = 0 or m = 0.)

Remark 1.9.8. Any submodule of a torsion-free R-module is torsion-free. Any
product of torsion-free R-modules is torsion-free. It follows that any direct sum of
torsion-free R-modules is torsion-free.

Proposition 1.9.9. Any flat R-module M is torsion-free.

Proof. It suffices to show that for any r ∈ R which is not a left zero-divisor, the
map g : M → M carrying m to rm is an injection. Consider the homomorphism of
right R-modules f : R→ R carrying x to rx, which is an injection. By the flatness
of M , the map f ⊗RM : R⊗RM → R⊗RM , which can be identified with g, is an
injection.
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Lemma 1.9.10. Let R be a commutative domain and let K = Frac(R). For every
torsion-free R-module M , the map f : M ≃ M ⊗R R → M ⊗R K induced by the
inclusion R ⊆ K is an injection.

Proof. Let S = R\{0}. Consider the module of fractions S−1M := (S ×M)/ ∼,
where ∼ is the equivalence relation defined as follows: (s,m) ∼ (s′,m′) if and only
if there exists t ∈ S such that t(sm′ − s′m) = 0. The equivalence class of (s,m) is
denoted by m/s. The R-bilinear map M ×K → S−1M sending (m, a/b) to ma/b,
where a, b ∈ R, induces a homomorphism g : M ⊗R K → S−1M . The map gf is an
injection: m/1 = 0 in S−1M if and only if m = 0. Thus f is an injection.

Remark 1.9.11. The homomorphism M ⊗R K → S−1M in the above proof is in
fact an isomorphism. See [AM, Proposition 3.5].

Lemma 1.9.12. Let R be a commutative domain. Every finitely generated torsion-
free R-module M can be embedded into Rn for some n.

Proof. Let K be the fraction field of R. Then M ≃M ⊗R R ↪→M ⊗R K ≃ Kn for
some n. Since M is finitely generated, there exists a common denominator r ∈ R
of the coordinates of the image of M in Kn. Then the image of M is contained in
r−1Rn ≃ Rn.

In the case of commutative domains, the preceding lemma allows us to restate
Corollary 1.8.10 (1)⇐⇒ (2) as follows.

Proposition 1.9.13. A commutative domain R is a Prüfer domain if and only if
every finitely generated torsion-free R-module is projective.

Corollary 1.9.14. Let R be a Prüfer domain (e.g. a Dedekind domain). Every
torsion-free R-module M is flat.

Proof. Since M is a filtered colimit of its finitely generated submodules, we may
assume M finitely generated. In this case, M is projective by the proposition.

Remark 1.9.15. Conversely, by a theorem of Chase, a ring R such that every
torsion-free R-module is flat is left semi-hereditary. See [L1, Theorem 4.67] for
details.

Example 1.9.16. The Z-module ZN is torsion-free and hence flat.
For n ≥ 2, the Z-module Z/nZ is not torsion-free or flat.

Flatness and change of rings
Lemma 1.9.17. Let R and S be rings and let M be an (R, S)-bimodule.

(1) If M is flat as a right S-module, then for any injective R-module I, HomR(M, I)
is an injective S-module.

(2) If M is projective as a left R-module, then for any projective S-module P ,
M ⊗S P is a projective R-module.
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Proof. The functor
HomR(M,−) : R-Mod→ S-Mod

is a right adjoint to functor M ⊗S −.
(1) By assumption, M⊗S− is exact. It follows that HomR(M,−) carries injective

R-modules to injective S-modules.
(2) By assumption, HomR(M,−) is exact. It follows that M⊗S− carries projec-

tive S-modules to projective R-modules. (This also follows from the characterization
of projective modules as direct summands of free modules.)

Example 1.9.18. Let R→ S be a ring homomorphism and take M = SR S . Then
SR ⊗S − can be identified with restriction of scalars.
(1) We recover Remark 1.8.44.
(2) If SR is projective, then any projective S-module P is a projective R-module

by restriction of scalars.

Example 1.9.19. Let S → R be a ring homomorphism and take M = RR S . Then
HomR(RS ,−) can be identified with restriction of scalars.

(1) If RS is flat, then, any injective R-module I is an injective S-module by
restriction of scalars.

(2) For any projective S-module P , R⊗S P is a projective R-module.

For a summary of implications among the properties of rings and modules dis-
cussed in these lectures, see page 139.



Chapter 2

Derived categories and derived
functors

Introduction
Let A and B be abelian categories and let F : A → B be a left exact functor. For
any short exact sequence

0→ X → Y → Z → 0
in A, we have, by the left exactness of F , an exact sequence

0→ FX → FY → FZ

in B. Under suitable conditions, we can define additive functors RnF : A → B,
i ≥ 1, called the right derived functors of F , such that the exact sequence in B
extends to a long exact sequence

0→ FX → FY → FZ → R1FX → R1FY → R1FZ → · · ·
→ RnFX → RnFY → RnFZ → · · · .

Roughly speaking, the right derived functors measure the lack of right exactness
of F . The functors can be assembled into one single functor RF : D+(A)→ D+(B)
between derived categories.

2.1 Complexes

Complexes
Let A be an additive category.

Definition 2.1.1. A (cochain) complex in A consists of X = (Xn, dnX)n∈Z, where
Xn is an object of A, dnX : Xn → Xn+1 is a morphism of A (called differential) such
that for any n, dn+1

X dnX = 0. The index n in Xn is called the degree. A (cochain)
morphism of complexes X → Y is a collection of morphisms (fn)n∈Z of morphisms
fn : Xn → Y n in A such that dnY fn = fn+1dnX . We let C(A) denote the category of
complexes in A.

51
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Remark 2.1.2. A chain complex in A consists of X = (Xn, dn)n∈Z, where Xn is an
object of A, dn : Xn → Xn−1 is a morphism of A such that for any n, dn−1dn = 0. A
chain complex can be regarded as a cochain complex via the formulas X−n = Xn and
d−n = dn, and vice versa. Unless otherwise stated, complex always means cochain
complex in these lectures.

Note that C(A) is isomorphic to the full subcategory of A(Z,≤) spanned by func-
tors X : (Z,≤)→ A sending n→ n+2 to a zero morphism for every n. Furthermore,
C(A) is an additive category. We have (X ⊕ Y )n = Xn ⊕ Y n and the zero complex
0 with 0n = 0 is a zero object of C(A). If A is an abelian category, then C(A) is an
abelian category as well, with ker(f)n = ker(fn) and coker(f)n = coker(fn).
Definition 2.1.3. We say that a complex X is bounded below (resp. bounded above)
if Xn = 0 for n ≪ 0 (resp. n ≫ 0). We say that X is bounded if it is bounded
below and bounded above. For an interval I ⊆ Z, we say that X is concentrated in
degrees in I if Xn = 0 for n ̸∈ I. We let C+(A), C−(A), Cb(A), CI(A) denote the
full subcategories of C(A) consisting of complexes bounded below, bounded above,
bounded, concentrated in I, respectively. These are additive subcategories.

The functor C [0,0](A)→ A carrying X to X0 is an equivalence of categories. A
quasi-inverse is denoted by A 7→ A[0], or simply A 7→ A. We will often use this
equivalence to identify A with C [0,0](A) and regard an object A of A as a complex
concentrated in degree 0.
Remark 2.1.4. The inclusion functor C≤n(A) ⊆ C(A) admits a left adjoint

σ≤n : C(A)→ C≤n(A)

with (σ≤nX)m = Xm for m ≤ n and (σ≤nX)m = 0 for m > n. Similarly, the
inclusion functor C≥n(A) ⊆ C(A) admits a right adjoint

σ≥n : C(A)→ C≥n(A)

with (σ≥nX)m = Xm for m ≥ n and (σ≥nX)m = 0 for m < n. These functors are
called naive truncation functors, as opposed to the truncation functors introduced
later. If A is an abelian category, the naive truncation functors are exact.
Definition 2.1.5. Let X be a complex and let k be an integer. We define a complex
X[k] by X[k]n = Xn+k and dnX[k] = (−1)kdn+k

X . For a morphism of complexes
f : X → Y , we define f [k] : X[k]→ Y [k] by f [k]n = fn+k. The functor [k] : C(A)→
C(A) is called the translation (or shift) functor of degree k.

The sign in the definition of X[k] will be explained later, after the definition of
mapping cone (Definition 2.1.20). Note that if X is concentrated in degrees [a, b],
then X[k] is concentrated in degrees [a− k, b− k].
Remark 2.1.6. We define an isomorphism of categories F : C(A)op → C(Aop) as
follows. For X in C(A), we define Y = FX in C(Aop) by Y n = X−n, dnY =
(−1)nd−n−1

X . We have a natural isomorphism F (X[1]) ≃ (FX)[−1] with F (X[1])n ≃
(FX)[−1]n given by (−1)n−1idX1−n .

There are several other constructions for complexes in an additive category. We
will return to them later. Now we proceed to define cohomology.
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Cohomology
Let A be an abelian category. Consider a sequence

X ′ f−→ X
g−→ X ′′

with gf = 0. We have a commutative diagram

im(f) � � ϕ //
� r

$$

ker(g)
mM

||
X ′ f //

:: ::

X
g //

"" ""zzzz

X ′′

coker(f) ψ // // im(g)
- 


;;

We have isomorphisms

im(ker(g)→ coker(f)) ≃ coker(ϕ) ≃ ker(ψ).

These objects measure the failure of the exactness at X.

Definition 2.1.7. Let X be a complex in A. We define

ZnX = ker(dnX : Xn → Xn+1),
BnX = im(dn−1

X : Xn−1 → Xn),
HnX = coker(BnX ↪→ ZnX),

and call them the cocycle, coboundary, cohomology objects, of degree n.

The letter Z stands for German Zyklus, which means cycle. We get additive
functors

Zn, Bn, Hn : C(A)→ A,

with Zn left exact. Note that Hn(X) = 0 if and only if X is exact at Xn.

Example 2.1.8. Let M be a smooth manifold of dimension n. The de Rham
complex Ω•(M) of M is a complex of R-vector spaces:

· · · → 0→ Ω0(M)→ · · · → Ωn(M)→ 0 · · · ,

where Ωi(M) denotes the space of smooth differential i-forms on M . The i-th de
Rham cohomology of M , H i

dR(M), is by definition the cohomology of Ω•(M) of
degree i.

Definition 2.1.9. A complex X is said to be acyclic if HnX = 0 for all n. A
morphism of complexes X → Y is called a quasi-isomorphism if Hnf : HnX → HnY
is an isomorphism for all n.
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Later we will define the derived category D(A) of A. Roughly speaking, D(A)
is C(A) modulo quasi-isomorphisms.

We have Hn(X[k]) ≃ Hn+kX.
Note that the morphisms HnX → Hnσ≤nX, Hnσ≥nX → HnX are not isomor-

phisms in general. Moreover, if f : X → Y is a quasi-isomorphism, σ≤nf : σ≤nX →
σ≤nY and σ≥nf : σ≥nX → σ≥nY are not quasi-isomorphisms in general. To remedy
this problem, we introduce the following truncation functors.

Definition 2.1.10. Let X be a complex. We define

τ≤nX = (· · · → Xn−1 dn−1
X−−−→ ZnX → 0→ · · · ),

τ≥nX = (· · · → 0→ Xn/BnX
dn

X−→ Xn+1 → · · · ).

Here Xn/BnX denotes coker(dn−1
X ).

We obtain functors
τ≤n, τ≥n : C(A)→ C(A),

with τ≤n left exact and τ≥n right exact.

Remark 2.1.11. The morphism τ≤nX → X induces an isomorphism Hmτ≤nX →
HmX for m ≤ n and Hmτ≤nX = 0 for m > n. The morphism X → τ≥nX induces
an isomorphism HmX → Hmτ≥nX for m ≥ n and Hmτ≥nX = 0 for m < n. The
functors τ≤n and τ≥n preserve quasi-isomorphisms.

Remark 2.1.12. For a ≤ b, we have τ≤aτ≥bX ≃ τ≥bτ≤aX and we write τ [a,b]X for
either of them. We have τ [n,n]X ≃ (HnX)[−n].

The functor Hn is neither left exact nor right exact in general. However, it has
the following important property.

Proposition 2.1.13. Let 0 → L
f−→ M

g−→ N → 0 be a short exact sequence of
complexes. Then we have a long exact sequence

· · · → HnL
Hnf−−→ HnM

Hng−−→ HnN
δ−→ Hn+1L

Hn+1f−−−−→ Hn+1M
Hn+1g−−−−→ Hn+1N → · · · ,

which is functorial with respect to the short exact sequence.

This generalizes the case of the snake lemma where the exact rows are short
exact. The morphism δ is called the connecting morphism.

Proof. The sequence τ [n,n+1]L → τ [n,n+1]M → τ [n,n+1]N provides a commutative
diagram

Ln/BnL //

��

Mn/BnM //

��

Nn/BnN //

��

0

0 // Zn+1L // Zn+1M // Zn+1N

with exact rows. Applying the snake lemma, we obtain the desired exact sequence.
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Corollary 2.1.14. Let

0 // L //

u
��

M //

v
��

N //

w
��

0

0 // L′ //M ′ // N ′ // 0

be a commutative diagram of complexes with exact rows. If two of the three mor-
phisms u, v, w are quasi-isomorphisms, then the third one is a quasi-isomorphism
too.

Proof. We prove the case where u and w are quasi-isomorphisms. The other cases
are similar. By the proposition, we have a commutative diagram

Hn−1N //

Hn−1w
��

HnL //

Hnu
��

HnM //

Hnv
��

HnN //

Hnw
��

Hn+1L

Hn+1u
��

Hn−1N ′ // HnL′ // HnM ′ // HnN ′ // Hn+1L′

with exact rows. By assumption, Hn−1w, Hnw, Hnu, Hn+1u are isomorphisms. It
follows by the five lemma that Hnv is an isomorphism.

For any morphism of complexes L → M , not necessarily monomorphic, the
induced morphisms HnL→ HnM also extends naturally to a long exact sequence,
by Proposition 2.1.23 below.

Resolutions
Let M be an R-module. Choosing a set of generators, we get an exact sequence
F 0 f−→M → 0, where F 0 is a free R-module. Choosing a generating set of relations
among the generators, namely a set of generators for ker(f), we get an exact sequence
F−1 → F 0 → M → 0, where F−1 is a free R-module. Further choosing relations
among the relations, we get, by induction, an exact sequence

· · · → F−n → · · · → F 0 →M → 0,

where each F i is a freeR-module. Such an exact sequence induces a quasi-isomorphism
F • →M , where F • ∈ C≤0(R-Mod), and is called a free resolution of M .

Definition 2.1.15. Let X be an object of A. A left resolution of X is an exact
sequence

· · · → P−n → · · · → P 0 → X → 0

in A, or equivalently a quasi-isomorphism P • → X with P • ∈ C≤0(A). It is called
a projective resolution if each P i is projective. Dually, a right resolution of X is an
exact sequence

0→ X → I0 → · · · → In → · · ·

in A, or equivalently a quasi-isomorphism X → I• such that I• ∈ C≥0(A). It is
called an injective resolution if each I i is injective.
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Definition 2.1.16. We say that A admits enough injectives if for every object X
of A, there exists a monomorphism X → I with I injective. We say that A admits
enough projectives if for every object X of A, there exists an epimorphism P → X
with P projective.

If A admits enough injectives, then every object of X admits an injective reso-
lution. If A admits enough projectives, then every object of X admits a projective
resolution.

Example 2.1.17. Let R be a small ring. The abelian category R-Mod admits
enough injectives and enough projectives.

Example 2.1.18. Let X be a small topological space. The category Shv(X) is an
abelian category with enough injectives, but not enough projectives in general.

To show that Shv(X) admits enough injectives, consider, for every point x ∈ X,
the stalk functor i∗x : Shv(X)→ Ab defined by i∗xF = colimU∈Nbhd(x)op F(U), where
Nbhd(x) is the partially ordered set of open neighborhoods of x. This functor
admits a right adjoint ix∗ : Ab → Shv(X) defined by (ix∗A)(U) = A if x ∈ U
and (ix∗A)(U) = 0 if x ̸∈ U . Since Nbhd(x)op is filtered, the functor i∗x is exact.
Moreover, ix∗ is clearly exact. Let F be a sheaf of abelian groups on X. We choose
i∗xF ↪→ Ix with Ix injective for each x ∈ X. We have

F ↪→
∏
x

ix∗i
∗
xF ↪→

∏
x

ix∗Ix = I.

Since i∗x is exact, the right adjoint ix∗ preserves injectives, so that I is injective.
One can show that if X is a locally connected topological space, then Shv(X)

admits enough projectives if and only if X is an Alexandrov space (namely, if any
(infinite) intersection of open subsets is open).

A glimpse of derived functors
Let F : A → B be a left exact functor between abelian categories. We define RiFX
by H iFI•, where X → I• is an injective resolution. One can check that this is a
well-defined functor. We have R0FX ≃ FX. For any short exact sequence

0→ X → Y → Z → 0

in A, applying Proposition 2.1.13 to the short exact sequence of complexes given by
the horseshoe lemma below, we obtain a long exact sequence

0→ FX → FY → FZ → R1FX → R1FY → R1FZ → · · · .

Lemma 2.1.19 (Horseshoe lemma). Let A be a category with enough injectives.
Any diagram

0 X ′ X X ′′ 0

I ′• I ′′•
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with a short exact row in A such that the columns are injective resolutions in A can
be completed into a commutative diagram

0 X ′ X X ′′ 0

0 I ′• I• I ′′• 0i• p•

with exact rows such that the columns are injective resolutions, In = I ′n ⊕ I ′′n and
in and pn are given by the canonical morphisms for all n ≥ 0.

As we will later prove the long exact sequence without using the lemma, we leave
the proof of the lemma as an exercise.

Dually, let G : A → B be a right exact functor. We define LiFX by H−iGP •,
where P • → X is a projective resolution. In particular, L0FX ≃ FX. For any
short exact sequence

0→ X → Y → Z → 0
in A, we have a long exact sequence

· · · → L1GX → L1GY → L1GZ → GX → GY → GZ → 0.

Mapping cones
Let A be an additive category.

Definition 2.1.20. Let f : X → Y be a morphism of complexes in A. We define
the mapping cone of f to be the complex Cone(f)n = X[1]n ⊕ Y n = Xn+1 ⊕ Y n

with differential
dnCone(f) =

(
dnX[1] 0
f [1]n dnY

)
=
(
−dn+1

X 0
fn+1 dnY

)
.

Intuitively, for
(
x
y

)
∈ Xn+1 ⊕ Y n, dnCone(f)

(
x
y

)
=
(
−dn+1

X x
fn+1x+ dnY y

)
.

Note that the sign in the definition of the differential of X[1] makes Cone(f) a
complex:

dnCone(f)d
n−1
Cone(f) =

(
−dn+1

X 0
fn+1 dnY

)(
−dnX 0
fn dn−1

Y

)
=
(

dn+1
X dnX 0

dnY f
n − fn+1dnX dnY d

n−1
Y

)
= 0.

Example 2.1.21. If X and Y are concentrated in degree 0, then Cone(f) can be
identified with the complex X0 f0

−→ Y 0 concentrated on degrees −1 and 0.

Remark 2.1.22. Let X and Y be CW complexes and let f : X → Y be a cellular
map. The (topological) mapping cone Cone(f) of f is obtained by gluing the base of
the cone Cone(X) to Y via f . If we let c denote the cone point, then Cone(C•(f))
can be identified with C•(Cone(f))/C•(c). Here C•(f) denotes the cellular chain
complex.1 As in Remark 2.1.2, a chain complex (X•, d•) is regarded as a cochain
complex by X−n = Xn, d−n = dn.

1We invite readers unfamiliar with CW complexes to replace “CW” and “cellular” by “simpli-
cial”.
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Assume that A is an abelian category. We have a short exact sequence of com-
plexes

0→ Y
i−→ Cone(f) p−→ X[1]→ 0,

where i : Y → Cone(f) is the inclusion and p : Cone(f) → X[1] is the projection.
The short exact sequence induces a long exact sequence

· · · → Hn−1(X[1]) δ−→ HnY
Hni−−→ Hn(Cone(f)) Hnp−−→ Hn(X[1])→ · · · .

Proposition 2.1.23. Via the isomorphism Hn−1(X[1]) ≃ HnX, the connecting
morphism can be identified with Hnf .

The long exact sequence thus has the form

· · · → HnX
Hnf−−→ HnY

Hni−−→ Hn(Cone(f)) Hnp−−→ Hn+1X → · · · .

Proof. The connecting morphism is constructed using the snake lemma applied to
the commutative diagram

Y n−1/Bn−1Y //

��

Cn−1/Bn−1C //

��

Xn/BnX //

��

0

0 // ZnY // ZnC // Zn+1X,

where C = Cone(f). We reduce by the Freyd-Mitchell Theorem to the case of

modules. Let x ∈ ZnX. Then
(
x
0

)
+ Bn−1C is a lifting of x + BnX. We conclude

by dn−1
C

(
x
0

)
=
(

0
fn(x)

)
.

Proposition 2.1.24. A morphism of complexes f : X → Y is a quasi-isomorphism
if and only if its cone Cone(f) is acyclic.

Proof. Indeed, by the long exact sequence, Hnf is an isomorphism for all n if and
only if Hn(Cone(f)) = 0 for all n.

Proposition 2.1.25. Consider a short exact sequence of complexes 0 → X
f−→

Y
g−→ Z → 0. Then the map ϕ : Cone(f) → Z defined by ϕn = (0, gn) is a quasi-

isomorphism.

Proof. We have a short exact sequence

0→ Cone(idX) ψ−→ Cone(f) ϕ−→ Z → 0,

where ψ is associated to the commutative square

X
idX //

idX
��

X

g
��

X
f // Y.

Since Cone(idX) is acyclic (in fact homotopy equivalent to zero), the long exact
sequence implies that ϕ is a quasi-isomorphism.
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Remark 2.1.26. We have a commutative diagram of long exact sequences

HnX
Hnf // HnY Hni // Hn(Cone(f))H

np //

Hnϕ

��
(∗)

Hn+1X
Hn+1f // Hn+1Y

HnX
Hnf // HnY

Hng // HnZ
−δ // Hn+1X

Hn+1f// Hn+1Y.

Indeed, for the commutativity of the square (∗) we reduce by the Freyd-Mitchell

Theorem to the case of modules, and it suffices to note that for
(
x
y

)
∈ ZnCone(f),

we have fn(x)+dny = 0. By the five lemma, this gives another proof of Proposition
2.1.25.

2.2 Homotopy category of complexes
Let A be an additive category. Let X and Y be complexes in A. We let

Ht(X, Y ) =
∏
n

HomA(Xn, Y n−1)

denote the abelian group of families of morphisms h = (hn : Xn → Y n−1)n∈Z. Given
h, consider fn = dn−1

Y hn + hn+1dnX : Xn → Y n. We have

dnY f
n = dn−1

Y dnY h
n + dnY h

n+1dnX = dnY h
n+1dnX = dnY h

n+1dnX + hn+2dn+1
X dnX = fn+1dnX .

Thus we get a morphism of complexes f : X → Y . We get a homomorphism of
abelian groups

(2.2.1) Ht(X, Y )→ HomC(A)(X, Y ).

Definition 2.2.1. We say that a morphism of complexes f : X → Y is null-
homotopic if there exists h ∈ Ht(X, Y ) such that fn = dn−1

Y hn+hn+1dnX . We say that
two morphisms of complexes f, g : X → Y are homotopic if f − g is null-homotopic.

Lemma 2.2.2. Let f : X → Y , g : Y → Z be morphisms of complexes in A. If f
or g is null-homotopic, then gf is null-homotopic.

Proof. If f = dh + hd for h ∈ Ht(X, Y ), then gf = gdh + ghd = d(gh) + (gh)d,
where gh ∈ Ht(X,Z). The other case is similar.

Definition 2.2.3. We define the homotopy category of complexes in A, K(A), as
follows. The objects of K(A) are objects of C(A), that is, complexes in A. For
complexes X and Y , we put

HomK(A)(X, Y ) = coker(Ht(X, Y ) (2.2.1)−−−→ HomC(A)(X, Y )).

In other words, morphisms in K(A) are homotopy classes of morphisms of com-
plexes.
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An isomorphism in K(A) is called a homotopy equivalence. By definition, a
morphism of complexes f : X → Y is a homotopy equivalence if there exists a
morphism of complexes g : Y → X such that fg is homotopic to idY and gf is
homotopic to idX . We say that two complexes are homotopy equivalent if they are
isomorphic in K(A). A complex X is homotopy equivalent to zero if and only if idX
is null-homotopic.

Remark 2.2.4. The category K(A) is an additive category and the functor C(A)→
K(A) carrying a complex to itself and a morphism of complexes to its homotopy
class is an additive functor.

Notation 2.2.5. Let I ⊆ Z be an interval. We let K+(A), K−(A), Kb(A),
KI(A) denote the full subcategories of K(A) consisting of complexes in C+(A),
C−(A), Cb(A), CI(A), respectively. These are additive subcategories. The functor
C [0,0](A) → K [0,0](A) is an isomorphism of categories. We thus obtain an equiva-
lence of categories between A and K [0,0](A).

Remark 2.2.6. Let A be an abelian category. Note that dh + hd induces zero
morphisms on cohomology. Thus if f, g : X → Y are homotopic, then Hnf =
Hng : HnX → HnY . The additive functor Hn : C(A) → A factorizes through an
additive functor

Hn : K(A)→ A.
In particular, a homotopy equivalence is a quasi-isomorphism. The converse does
not hold in general. Indeed, an acyclic complex is not homotopic to zero in general,
as shown by the following lemma.

Similarly, the additive functors τ≤n, τ≥n : C(A)→ C(A) induce additive functors

τ≤n, τ≥n : K(A)→ K(A).

Lemma 2.2.7. Let A be an abelian category. Then a complex X in A is homotopy
equivalent to zero if and only if X is acyclic and the short exact sequences

0→ ZnX → Xn → Zn+1X → 0

are split.

Thus a complex in A is homotopy equivalent to zero if and only if it is isomorphic
to (Zn ⊕ Zn+1), with dn : Zn ⊕ Zn+1 → Zn+1 → Zn+1 ⊕ Zn+2. This holds in fact
more generally for idempotent-complete2 additive categories.

Proof. If the sequences are split short exact sequences, so that Xn can be identified
with Zn ⊕ Zn+1, then hn : Zn ⊕ Zn+1 → Zn → Zn−1 ⊕ Zn satisfies hd + dh = idX .
Conversely, if hd+ dh = idX , then hn+1 restricted to Zn+1X provides a splitting of
the short exact sequence.

2In a category C, a morphism e : X → X such that e2 = e is called an idempotent. A typical
example for C additive is the composition e = gf : A ⊕ B

f−→ A
g−→ A ⊕ B. We have fg = idA.

We say that an idempotent e : X → X splits if there exist morphisms f : X → Y , g : Y → X such
that e = gf with fg = idY . We say that C is idempotent-complete if every idempotent in C splits.
Every abelian category is idempotent-complete.
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Remark 2.2.8. The homotopy category brings us one step closer to the derived cat-
egory of an abelian category A. We will see that under the condition that A admits
enough injectives, D+(A) is equivalent to K+(I), where I is the full subcategory of
A spanned by injective objects.

Remark 2.2.9. Even for A abelian, K(A) is not an abelian category in general.
In fact, one can show that for A abelian, K(A) admits kernels if and only if every
short exact sequence in A splits (in this case K(A) is equivalent to ∏ZA and is an
abelian category) [V2, Propositions II.1.2.9, II.1.3.6].

2.3 Triangulated categories
Given a category D equipped with a functor X 7→ X[1], diagrams of the form
X → Y → Z → X[1] are called triangles. It is sometimes useful to visualize such
diagrams as

Z
+1

~~
X // Y

__

A morphism of triangles is a commutative diagram

X //

f

��

Y //

g

��

Z //

h
��

X[1]
f [1]
��

X ′ // Y ′ // Z ′ // X ′[1].

Such a morphism is an isomorphism if and only if f , g, h are isomorphisms.

Definition 2.3.1 (Verdier). A triangulated category consists of the following data:
(1) An additive category D.
(2) A translation functor D → D which is an equivalence of categories. We denote

the functor by X 7→ X[1].
(3) A collection of distinguished triangles X → Y → Z → X[1].

These data are subject to the following axioms:
(TR1)

(a) The collection of distinguished triangles is stable under isomorphism.
(b) For every object X of D, X idX−−→ X → 0→ X[1] is a distinguished triangle.
(c) Every morphism f : X → Y in D can be extended to a distinguished triangle

X
f−→ Y → Z → X[1].

(T2) If X f−→ Y
g−→ Z

h−→ X[1] is a distinguished triangle, then the (clockwise)
rotated diagram Y

g−→ Z
h−→ X[1] −f [1]−−−→ Y [1] is a distinguished triangle.

(TR4) Given three distinguished triangles

X
f−→ Y

f ′
−→ U

f ′′
−→ X[1],

Y
g−→ Z

g′
−→ W

g′′
−→ Y [1],

X
h−→ Z

h′
−→ V

h′′
−→ X[1],
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with h = gf , there exists a distinguished triangle

U
i−→ V

i′−→ W
i′′−→ U [1]

such that the following diagram commutes

X Z W U [1]

Y V Y [1]

U X[1]

h

f

g′

h′

i′′

g′′

f ′

g

h′′

i′ f ′[1]

f ′′

i f [1]

This notion was introduced by Verdier in his 1963 notes [V1] and 1967 thesis
of doctorat d’État [V2]. Some authors call the translation functor the suspension
functor and denote it by Σ. (TR4) is sometimes known as the octahedron axiom, as
the four distinguished triangles and the four commutative triangles can be visualized
as the faces of an octahedron, as shown below:

V

U W

X Z

Y

+1
+1

+1

+1

Remark 2.3.2. The octahedron axiom can be compared with the following form of
the Third Isomorphism Theorem: Given three short exact sequences in an abelian
category A

0→ X
f−→ Y

f ′
−→ Y/X → 0

0→ Y
g−→ Z

g′
−→ Z/Y → 0

0→ X
h−→ Z

h′
−→ Z/X → 0

with h = gf , there exists a unique short exact sequence

0→ Y/X
i−→ Z/X

i′−→ Z/Y → 0
such that the following diagram commutes

X Z Z/Y

Y Z/X

Y/X

h

f

g′

h′g

f ′

i′

i
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Remark 2.3.3. The original definition included an axiom (TR3) and the following
stronger form of (T2) instead of (T2):

(TR2) A diagram X
f−→ Y

g−→ Z
h−→ X[1] is a distinguished triangle if and only

if the (clockwise) rotated diagram Y
g−→ Z

h−→ X[1] −f [1]−−−→ Y [1] is a distinguished
triangle.

May [M2, Section 2] observed that (TR3) can be deduced from (TR1) and (TR4),
as we shall see in Proposition 2.3.9. He also observed that (TR2) follows from (TR1),
(T2), and (TR3), as we shall see in Remark 2.3.15.

In a category equipped with a translation functor, we write [n] for [1] composed
n times for n ≥ 0. We often fix a quasi-inverse [−1] of [1] and we write [−n] for
[−1] composed n times.

Remark 2.3.4. (TR2) is equivalent to (T2) and the following dual of (T2):
(T2′) If X f−→ Y

g−→ Z
h−→ X[1] is a distinguished triangle, then the counterclock-

wise rotated triangle Z[−1] −h[−1]−−−−→ X
f−→ Y

g−→ Z is distinguished.
Rotating a triangle X f−→ Y

g−→ Z
h−→ X[1] thrice, we get X[1] −f [1]−−−→ Y [1] −g[1]−−−→

Z[1] −h[1]−−−→ X[2]. Thus (TR2) is equivalent to (T2) and the following condition: if
X[1] −f [1]−−−→ Y [1] −g[1]−−−→ Z[1] −h[1]−−−→ X[2] is a distinguished triangle, then the triangle
X

f−→ Y
g−→ Z

h−→ X[1] is distinguished.

Remark 2.3.5. We have an isomorphism of triangles

X
f // Y

g //

−idY

��

Z
h // X[1]

X
−f // Y

−g // Z
h // X[1].

Similarly, modifying exactly two signs in a triangle T produces a triangle isomorphic
to T .

Theorem 2.3.6. Let A be an additive category. We equip K(A) with the trans-
lation functor X 7→ X[1] in Definition 2.1.5. We say that a triangle in K(A) is
distinguished if it is isomorphic to a standard triangle, namely a triangle of the
form X

f−→ Y
i−→ Cone(f) p−→ X[1], where f is a morphism of complexes and i and p

are the canonical morphisms. Then K(A) is a triangulated category.

The proof will be given later in this section.

Example 2.3.7. The stable homotopy category of spectra hSp equipped with the
suspension functor Σ and the collection of (triangles isomorphic to) mapping cone
triangles is a triangulated category.

Example 2.3.8. The definition of the ∞-categorical analogue of triangulated cat-
egory is much simpler [L3, Section 1.1]: An ∞-category C is said to be stable if it
satisfies the following conditions:

(1) C admits a zero object, pullbacks, and pushouts;
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(2) A square in C of the form
X Y

0 Z

is a pullback if and only if it is a pushout.
The homotopy category of a stable ∞-category is a triangulated category, with dis-
tinguished triangles given by pullback/pushout squares as above. The triangulated
categories K(A) and hSp are both homotopy categories of stable ∞-categories.

Proposition 2.3.9. (TR1) and (TR4) imply the following property.
(TR3) Given a diagram

X i //

f

��

Y
j //

g

��

Z k //

h
��

X[1]
f [1]
��

X ′ i′ // Y ′ j′
// Z ′ k′

// X ′[1]

in which both rows are distinguished triangles and the square on the left is commu-
tative, there exists a dotted arrow rendering the entire diagram commutative.

Remark 2.3.10. The dotted arrow is not unique in general. This is the source of
many troubles.

It seems that there is no known example of a category (equipped with a trans-
lation functor and a collection of distinguished triangles) satisfying (TR1), (TR2),
and (TR3), but not (TR4) [N, Remark 1.3.15].

Proof of Proposition 2.3.9. By (TR1c), we may extend gi = i′f to a distinguished
triangle

X
gi−→ Y ′ j′′

−→ Z ′′ k′′
−→ X[1].

Applying (TR1c) to g and (TR4) to the distinguished triangles with bases g, i, and
gi, we get a morphism Z

h′
−→ Z ′′ such that h′j = j′′g and k = k′′h′. Similarly,

applying (TR1c) to f and (TR4) to the distinguished triangles with bases f , i′, and
gi, we get Z ′′ h′′

−→ Z ′ such that j′ = h′′j′′ and f [1]k′′ = k′h′′. It suffices to take
h = h′′h′.

Corollary 2.3.11. Let X f−→ Y
g−→ Z → X[1] be a distinguished triangle. Then

gf = 0.

Proof. By (TR1b), X idX−−→ X → 0 → X[1] is a distinguished triangle. By (TR3),
there exists a morphism 0→ Z such that the diagram

(2.3.1) X
idX //

idX

��

X //

f

��

0 //

��

X[1]
idX[1]
��

X
f // Y

g // Z // X[1]

commutes. The commutativity of the square in the middle implies gf = 0.
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Proposition 2.3.12. Let D be a triangulated category. Let W be an object of D
and let X f−→ Y

g−→ Z → X[1] be a distinguished triangle. Then the sequences

HomD(W,X) f◦−−−→ HomD(W,Y ) g◦−−−→ HomD(W,Z),

HomD(Z,W ) −◦g−−→ HomD(Y,W ) −◦f−−→ HomD(X,W )

are exact.

Proof. Since gf = 0, the compositions are zero. For the exactness of the first
sequence, it suffices to show that for j : W → Y satisfying gj = 0, there exists
i : W → X such that j = fi. Applying (TR1b), (T2), (TR3), we get the following
commutative diagram

W //

j

��

0 //

��

W [1]
i[1]
��

−idW [1]//W [1]
j[1]
��

Y
g // Z // X[1] −f [1] // Y [1].

For the exactness of the second sequence, it suffices to show that for k : Y → W
satisfying kf = 0, there exists l : Z → W such that k = lg. Applying (TR1b), (T2)
(twice), (TR3), we get the following commutative diagram

X
f //

��

Y
g //

k

��

Z

l

��

// X[1]

��
0 //W

idW //W // 0[1].

Corollary 2.3.13. Let

X //

f

��

Y //

g

��

Z //

h
��

X[1]
f [1]
��

X ′ // Y ′ // Z ′ // X ′[1]

be a morphism of distinguished triangles. If two of the three morphisms f , g, h are
isomorphisms, then so is the third one.

Proof. By (T2), we may assume that f and g are isomorphisms. Let W be any
object of the triangulated category. Then we have a commutative diagram

Hom(W,X) //

Hom(W,f)
��

Hom(W,Y ) //

Hom(W,g)
��

Hom(W,Z) //

Hom(W,h)
��

Hom(W,X[1]) //

Hom(W,f [1])
��

Hom(W,Y [1])
Hom(W,g[1])
��

Hom(W,X ′) // Hom(W,Y ′) // Hom(W,Z ′) // Hom(W,X ′[1]) // Hom(W,Y ′[1])

By Proposition 2.3.12 and (T2), the two rows are exact. By assumption, Hom(W, f),
Hom(W, g), Hom(W, f [1]), Hom(W, g[1]) are isomorphisms. By the five lemma,
it follows that Hom(W,h) is an isomorphism. Therefore h is an isomorphism by
Yoneda’s lemma.
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Corollary 2.3.14. Let

X
f−→ Y

g−→ Z
h−→ X[1]

X
f−→ Y

g′
−→ Z ′ h′

−→ X[1]

be distinguished triangles. Then there exists an isomorphism i : Z ∼−→ Z ′ rendering
the following diagram commutative:

X Y Z X[1]

X Y Z ′ X[1]

f g h

i

f g′
h′

Thus triangles extending a morphism X → Y are unique up to non-unique
isomorphisms.

Proof. By (TR3), there exists a morphism i rendering the above diagram commu-
tative. By Corollary 2.3.13, i is an isomorphism.

Remark 2.3.15. We can now show that (TR1), (T2), and (TR3) imply (TR2) (see
Remark 2.3.3). Indeed, Corollary 2.3.13 holds under these axioms. Let Y g−→ Z

h−→
X[1] −f [1]−−−→ Y [1] be a distinguished triangle. By (TR1c), there exists a distinguished
triangle X f−→ Y

g′
−→ Z ′ h′

−→ X[1]. By (T2), X[1] −f [1]−−−→ Y [1] −g[1]−−−→ Z[1] −h[1]−−−→ X[2] and
X[1] −f [1]−−−→ Y [1] −g′[1]−−−→ Z ′[1] −h′[1]−−−→ X[2] are distinguished triangles. By Corollary
2.3.14, there exists an isomorphism i : Z[1]→ Z ′[1], rendering the diagram

X[1] Y [1] Z[1] X[2]

X[1] Y [1] Z ′[1] X[2]

−f [1] −g[1] −h[1]

i

−f [1] −g′[1] −h′[1]

commutative. It follows thatX f−→ Y
g−→ Z

h−→ X[1] is isomorphic to the distinguished
triangle X f−→ Y

g′
−→ Z ′ h′

−→ X[1], and hence is a distinguished triangle by (TR1a).

Corollary 2.3.16. In a distinguished triangle X
f−→ Y → Z → X[1], f is an

isomorphism if and only if Z is a zero object.

Proof. Applying Corollary 2.3.13 to the diagram (2.3.1), we see that f is an isomor-
phism if and only if h is an isomorphism.

Example 2.3.17. A morphism of complexes f : X → Y is a homotopy equivalence
if and only if Cone(f) is homotopy equivalent to zero.

Proof of Theorem 2.3.6. (TR1a) and (TR1c) are clear from the definition of distin-
guished triangles. For any complex X, 0 → X

idX−−→ X → 0[1] is a distinguished
triangle as X can be identified with the cone of 0 → X. (TR1b) follows thus from
(T2).
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For (T2), it suffices to show that, for every morphism f : X → Y of complexes,
there exists a homotopy equivalence g : X[1]→ Cone(i) such that the diagram

Y i // Cone(f) p // X[1] −f [1] //

g

��

Y [1]

Y i // Cone(f) i′ // Cone(i) p′
// Y [1]

commutes in K(A). Here i, p, i′, p′ denote the canonical morphisms of complexes.
We have

Cone(i)n = Y n+1 ⊕ Cone(f)n ≃ Y n+1 ⊕Xn+1 ⊕ Y n,

dnCone(i) =

−d
n+1
Y 0 0
0 −dn+1

X 0
idY n+1 fn+1 dnY

 .
We define gn : X[1]n → Cone(i)n and g′n : Cone(i)n → X[1]n by

gn =

−f
n+1

idXn+1

0

 , g′n = (0, idXn+1 , 0).

It is clear that g, g′ are morphism of complexes, and g′g = idX[1], g′i′ = p, p′g =
−f [1]. Moreover,

idCone(i)n − gng′n =

idY n+1 fn+1 0
0 0 0
0 0 idY n

 = hn+1dnCone(i) + dn−1
Cone(i)h

n,

where hn =

0 0 idY n

0 0 0
0 0 0

.

Next we prove (TR3), which will be used in the proof of (TR4). We may assume
that the two distinguished triangles in (TR3) are standard. In other words, it suffices
to show that given a square in C(A)

(2.3.2) X
j //

f
��

Y

g
��

X ′ j′
// Y ′

that commutes in K(A), there exists a morphism of complexes h : Cone(j) →
Cone(j′) such that the diagram

(2.3.3) X
j //

f

��

Y
i //

g

��

Cone(j) p //

h
��

X[1]
f [1]
��

X ′ j′
// Y ′ i′ // Cone(j′) p′

// X ′[1]
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commutes in K(A). Here i, p, i′, p′ denote the canonical morphisms. The commu-
tativity of the square (2.3.2) in K(A) means that there exists k ∈ Ht(X, Y ) such
that gnjn − j′nfn = kn+1dnX + dn−1

Y ′ kn. We define h : Cone(j)→ Cone(j′) by

hn =
(
fn+1 0
kn+1 gn

)
.

It is clear that h is a morphism of complexes and that the squares in the middle and
on the right of (2.3.3) commute in C(A).

For (TR4), by Lemma 2.3.18 below (which depends on (TR3)), we may assume
that the three distinguished triangles are standard. We choose representatives of f
and g in C(A), which we still denote by f and g and we let h = gf . We have

Un = Xn+1 ⊕ Y n, V n = Xn+1 ⊕ Zn, W n = Y n+1 ⊕ Zn.

Let
in =

(
idXn+1 0

0 gn

)
, i′n =

(
fn+1 0

0 idZn

)
, i′′n =

(
0 0

idY n+1 0

)
.

Then the diagram in (TR4) commutes in C(A). It remains to find a homotopy
equivalence k : W → Cone(i) such that the diagram

U i // V i′ //W i′′ //

k
��

U [1]

U i // V
j′
// Cone(i) j′′

// U [1]

commutes in K(A). Here j′ and j′′ are the canonical morphisms. We have

Cone(i)n = Un+1 ⊕ V n ≃ Xn+2 ⊕ Y n+1 ⊕Xn+1 ⊕ Zn,

dnCone(i) =


dn+2
X 0 0 0
−fn+2 −dn+1

Y 0 0
idXn+2 0 −dn+1

X 0
0 gn+1 hn+1 dnZ

 .

We define k : W → Cone(i) and k′ : Cone(i)→ W by

kn =


0 0

idY n+1 0
0 0
0 idZn

 , k′n =
(

0 idY n+1 fn+1 0
0 0 0 idZn

)
.

It is clear that k and k′ are morphism of complexes and k′k = idW , j′′k = i′′,
k′j′ = i′. Moreover,

idCone(i)n − knk′n =


idXn+2 0 0 0

0 0 −fn+1 0
0 0 idXn+1 0
0 0 0 0

 = ln+1dnCone(i) + dn−1
Cone(i)l

n,
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where ln =


0 0 −idXn+1 0
0 0 0 0
0 0 0 0
0 0 0 0

.

Lemma 2.3.18. Let X f−→ Y be a morphism in C(A). A triangle X f−→ Y
g−→ Z

h−→
X[1] in K(A) is distinguished if and only if there exists a homotopy equivalence
j : Z → Cone(f) such that the diagram

X Y Z X[1]

X Y Cone(f) X[1]

f g

j

h

f i p

commutes in K(A). Here i and p are the canonical morphisms.

Proof. The “if” part is trivial. The “only if” part follows from Corollary 2.3.14
(which depends on (TR3)).

Remark 2.3.19. By Remark 2.3.4 and the isomorphism Cone(f) ≃ Cone(−f [1])[−1],
(T2) and (T2′) for K(A) are equivalent to each other. One can also prove (T2′)
for K(A) directly as follows. It suffices to show, for every morphism f : X → Y of
complexes, that there exists a homotopy equivalence g : Y → Cyl(f) such that the
diagram

Cone(f)[−1] −p // X
f // Y i //

g

��

Cone(f)

Cone(f)[−1] −p // X
i′ // Cyl(f) p′

// Cone(f)

commutes in K(A). Here Cyl(f) denotes the mapping cone of −p, and is called the
mapping cylinder of f . We have

Cyl(f)n = Cone(f)[−1]n+1 ⊕Xn ≃ Xn+1 ⊕ Y n ⊕Xn,

dnCyl(f) =

 −d
n+1
X 0 0

fn+1 dnY 0
−idXn+1 0 dnX

 .
We define g : Y → Cyl(f) and g′ : Cyl(f)→ Y by

gn =

 0
idY n

0

 , g′n = (0, idY n , fn).

It is clear that g, g′ are morphism of complexes, and g′g = idY , p′g = i, g′i′ = f .
Moreover,

idCyl(Y ) − gng′n =

idXn+1 0 0
0 0 −fn
0 0 idXn

 = hn+1dnCyl(Y ) + dn−1
Cyl(Y )h

n,
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where hn =

0 0 −idXn

0 0 0
0 0 0

.

Remark 2.3.20. Let f : X → Y be a cellular map of CW complexes. The (topo-
logical) mapping cylinder Cyl(f) of f is obtained by gluing the base of the cylinder
Cyl(X) of X to Y via f . The mapping cylinder Cyl(C•(f)) can be identified with
C•(Cyl(f)). The homotopy equivalence in the proof of (T2′) mirrors the fact that
Y is a deformation retract of Cyl(f).

Definition 2.3.21. Let D be a triangulated category and let A be an abelian
category. An additive functor H : D → A is called a cohomological functor if for
every distinguished triangle X f−→ Y

g−→ Z → X[1], the sequence HX Hf−−→ HY
Hg−→

HZ is exact.

For a cohomological functor H, we write HnX for H(X[n]). Applying (TR2),
we get a long exact sequence

· · · → HnX → HnY → HnZ → Hn+1X → · · · .

Example 2.3.22. For any abelian category A, Hn : K(A) → A is a homological
functor by Proposition 2.1.23.

Example 2.3.23. If D has small Hom sets, then Proposition 2.3.12 means that the
functors

HomD(W,−) : D → Ab, HomD(−,W ) : Dop → Ab

are cohomological functors. See Remark 2.3.24 below for the triangulated structure
of Dop.

Remark 2.3.24. Let D be a triangulated category. We endow Dop with the trans-
lation functor [−1]. We say that a triangle X

f−→ Y
g−→ Z

h−→ X[−1] in Dop is
distinguished if Z g−→ Y

f−→ X
h[1]−−→ Z[1] is a distinguished triangle in D. Then Dop is

a triangulated category.
The isomorphisms in Remark 2.1.6 induce an isomorphism of triangulated cate-

gories K(A)op ≃ K(Aop).

Remark 2.3.25. Let D be a triangulated category. We define a triangulated cat-
egory Danti with the same underlying additive category D and translation functor
[1] as follows: A triangle X f−→ Y

g−→ Z
h−→ X[1] is distinguished in Danti if and only

if X −f−→ Y
−g−→ Z

−h−→ X[1] is distinguished in D. We have an isomorphism of
triangulated categories D ∼−→ Danti carrying X to X and f to −f .

Triangulated functors
Definition 2.3.26. Let D and D′ be triangulated categories. A triangulated functor
consists of the following data:

(1) An additive functor F : D → D′.
(2) A natural isomorphism ϕX : F (X[1]) ≃ (FX)[1] of functors D → D′.
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These data are subject to the condition that F carries distinguished triangles in D
to distinguished triangles in D′. That is, for any distinguished triangle

X
f−→ Y

g−→ Z
h−→ X[1]

in D, FX Ff−→ FY
Fg−→ FZ

ϕZ◦Fh−−−−→ (FX)[1] is a distinguished triangle in D′.
Let (F, ϕ), (F ′, ϕ′) : D → D′ be triangulated functors. A natural transforma-

tion of triangulated functors is a natural transformation α : F → F ′ such that the
following diagram commutes for all X:

F (X[1]) ϕX //

α(X[1])
��

(FX)[1]
α(X)[1]
��

F ′(X[1])
ϕ′

X // (F ′X)[1].

Triangulated functors from D to D′ form an additive category TrFun(D,D′). Iso-
morphisms in TrFun(D,D′) are called natural isomorphisms of triangulated functors.

Example 2.3.27. Let F : A → B be an additive functor between additive cate-
gories. Then F extends to an additive functor C(F ) : C(A)→ C(B) with (C(F )X)n =
F (Xn) and dnC(F )X = F (dnX). The functor C(F ) induces an additive functorK(F ) : K(A)→
K(B), which is the unique functor such that the diagram

C(A) K(A)

C(B) K(B)

C(F ) K(F )

commutes. Here the horizontal arrows are the canonical functors. We have C(F )(X[1]) =
(C(F )X)[1] and K(F )(X[1]) = (K(F )X)[1]. Equipped with the latter, K(F ) is a
triangulated functor, because C(F ) preserves cones. We abbreviate C(F ) and K(F )
to F when no confusion arises.

Remark 2.3.28. A composition of triangulated functors is a triangulated functor.
If F : D → D′ is a triangulated functor and H : D′ → A is a cohomological functor,
then HF : D → A is a cohomological functor.

A triangulated functor F : D → D′ is called an isomorphism of triangulated
categories if there exists a triangulated functor G : D′ → D such that GF = idD
and FG = idD′ as triangulated functors. A triangulated functor F : D → D′ is
called an equivalence of triangulated categories if there exist a triangulated functor
G : D′ → D and natural isomorphisms of triangulated categories FG ≃ idD′ and
idD ≃ GF .

Definition 2.3.29. Let D be a triangulated category. A triangulated subcategory
of D consists of a subcategory D′ of D, stable under [1], and a class of distinguished
triangles such that D′ is a triangulated category and the inclusion functor D′ → D
is a triangulated functor.
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Remark 2.3.30. Let D′ be a full triangulated subcategory of D. Then a triangle
X

f−→ Y
g−→ Z

h−→ X[1] in D′ is a distinguished triangle in D′ if and only if it is a
distinguished triangle in D. Indeed, the “only if” part is trivial and for the “if” part,
note that there exists a distinguished triangle X f−→ Y → Z ′ → X[1] in D′, and by
Corollary 2.3.14 applied to D, there exists an isomorphism i : Z → Z ′ such that the
diagram

X Y Z X[1]

X Y Z ′ X[1]

f g h

i

f

commutes. By (TR1a) applied to D′, X f−→ Y
g−→ Z

h−→ X[1] is a distinguished
triangle in D′.

It follows that a full triangulated subcategory is determined by its set of objects.
A nonempty set D′ of objects of D, stable under [1], spans a full triangulated subcat-
egory if and only if for every morphism g : Y → Z with Y and Z in D′, there exists
a distinguished triangle X → Y → Z → X[1] with X in D′. The only nontrivial
point here is that in the “if” part, D′ is stable under [−1] and finite direct sums
up to isomorphisms in D. For this we use the fact that Y → 0 → Y [1] −id−−→ Y [1]
and X ⊕ Y → X → Y [1] −id−−→ Y [1] are distinguished triangles for X and Y in D
(Exercise).

Example 2.3.31. Let A be an additive category. Then K+(A), K−(A), Kb(A) are
full triangulated subcategories of K(A). On the other hand, for a nonempty interval
I ⊊ Z, KI(A) is not stable under translation unless A has no nonzero objects.

2.4 Localization of categories
Proposition 2.4.1. Let C be a category and let S be a collection of morphisms.
Then there exists a category C[S−1] and a functor Q : C → C[S−1] such that

(1) For any s ∈ S, Q(s) is an isomorphism.
(2) For any functor F : C → D such that F (s) is invertible for all s ∈ S, there

exists a unique functor G : C[S−1]→ D such that F = GQ.

Note that in (2) we require an equality of functors, not just natural isomor-
phism. The pair (C[S−1], Q) is clearly unique up to unique isomorphism (not just
equivalence). We call C[S−1] the localization of C with respect to S.

Proof. Let Ob(C[S−1]) = Ob(C). Consider diagrams in C of the form

→ · · · →← · · · ←→ · · · → · · · ← · · · ←,

where each ← represents an element of S. More formally, such a diagram is a finite
sequence (fi) = fn · · · f0, fi ∈ T = Mor(C)∐S, with source(fi+1) = target(fi). Here

source(α(f)) = source(f), target(α(f)) = target(f),
source(β(s)) = target(s), target(β(s)) = source(s),
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where α : Mor(C)→ T , β : S → T are the inclusions. We adopt the convention that
a sequence of length zero is uniquely determined by an object X and we write iX
for the sequence. Consider the equivalence relation on the set of such diagrams that
is stable under concatenation and generated by the following relations:

• α(fg) ∼ α(f)α(g), α(idX) ∼ iX .
• For s : X → Y in S, β(s)α(s) ∼ idX and α(s)β(s) ∼ idY .

We define morphisms of C[S−1] to be equivalence classes of such diagrams. We define
Q : C → C[S−1] by QX = X and Qf = [α(f)]. Then (1) is clearly satisfied. For
F as in (2), the unique functor G is given by GX = FX, G([α(f)]) = Ff , and
G([β(s)]) = (Fs)−1.

Remark 2.4.2. Property (2) above implies that the functor −Q : Fun(C[S−1],D)→
Fun(C,D) given by composition with Q is injective on objects and describes its
image. This functor is fully faithful. Indeed, given functors G and G′ from C[S−1]
to D natural transformations G→ G′ and QG→ QG′ amount to the same data.

Remark 2.4.3. If C is a small category, then C[S−1] is a small category. If the Hom
sets of C are small, then the Hom sets of C[S−1] is not small in general. However,
as we shall see, in most of our applications, the Hom sets of C[S−1] are small.

We now give conditions guaranteeing simpler descriptions of C[S−1].

Definition 2.4.4. We say that S is a right multiplicative system if the following
conditions hold:

(M1) If s : X → Y , t : Y → Z belong to S, then ts belongs to S. For any X, idX
belongs to S.

(M2) Given morphisms f : X → Y and s ∈ X → X ′ with s ∈ S, there exist
t : Y → Y ′ and g : X ′ → Y ′ with t ∈ S such that gs = tf as shown by the diagram

X
f //

s
��

Y

t
��

X ′ g // Y ′.

(M3) Let f, g : X ⇒ Y be morphisms such that there exists s : W → X in S
satisfying fs = gs. Then there exists t : Y → Z in S such that tf = tg.

We say that S is a left multiplicative system if it is a right multiplicative system
in Cop). That is, if it satisfies (M1), (M2′) and (M3′), where (M2′) and (M3′) are
(M2) and (M3) with all arrows reversed. We say that S is a multiplicative system if
it is both a left multiplicative system and a right multiplicative system.

For any collection S of morphisms in a category C, and for any object Y of C,
we let SY/ denote the full subcategory of CY/ consisting of (Y, s : Y → Y ′) with s
in S. A morphism from (Y ′, s) to (Y ′′, t) is a morphism f : Y ′ → Y ′′ in C such that
t = fs. Dually, for any object X of C, we let S/X denote the full subcategory of C/X
consisting of (X ′, s : X ′ → X) with s in S.

Proposition 2.4.5. Let S be a right multiplicative system in a category C.
(1) The category SY/ is filtered for any object Y of C.
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(2) Moreover, for objects X and Y of C, the map

colim
(Y ′,s)∈SY/

HomC(X, Y ′)→ HomC[S−1](X, Y )

carrying a map f : X → Y ′ indexed by s : Y → Y ′ to Q(s)−1Q(f) is a bijection.

This property is sometimes summarized as follows: C[S−1] admits a calculus of
left fractions [GZ, Section I.2]. By the description of filtered colimits of sets (Remark
1.6.25), a morphism from X to Y in C[S−1] is an equivalence class of diagrams of
the form

X
f−→ Z

s←− Y

in C with s ∈ S, sometimes called “right roofs” [GM, Remark III.2.9] (“left roofs” for
certain authors). Two such diagrams (f, Z, s), (f ′, Z ′, s′) are said to be equivalent if
there exists a third diagram (f ′′, Z ′′, s′′) and a commutative diagram

Z

��
X

f ′′
//

f
==

f ′ !!

Z ′′ Y

s

``

s′′
oo

s′~~
Z ′.

OO

Proof. (1) Let s : Y → Y ′, s′ : Y → Y ′′ be in S, defining objects (Y ′, s), (Y ′′, s′)
of SY/. Applying (M2), we get t : Y ′ → Z, g : Y ′′ → Z in C with t in S such that
ts = gs′. By (M1), ts is in S. Then t and g define morphisms (Y ′, s)→ (Z, ts) and
(Y ′′, s′)→ (Z, ts) in SY/, respectively. Now let u, v : (Y ′, s) ⇒ (Y ′′, s′) be morphisms
in SY/. Then s′ = us = vs. Applying (M3), we get w : Y ′′ → W in S with wu = wv.
By (M1), ws′ is in S, so that w defines a morphism (Y ′′, s′) → (W,ws′) in SY/.
Therefore, SY/ is filtered.

(2) We define a category D by Ob(D) = Ob(C) and

HomD(X, Y ) = colim
Y ′∈SY/

HomC(X, Y ′).

Given (f, Y ′, s) : X → Y , we let [f, Y ′, s] denote its equivalence class in the colimit.
Composition is defined as follows. Given (f, Y ′, s) : X → Y and (g, Z ′, t) : Y → Z,
we apply (M2) to g and s to get the commutative diagram

Z ′′

Y ′

g′
==

Z ′

s′
aa

X

f
>>

Y

s

aa
g

==

Z

t

``

with s′ in S and we set [g, Z ′, t][f, Y ′, s] = [g′f, Z ′′, s′t], where s′t is in S by (M1).
It is easy to check that this does not depend on the choices of (g′, Z ′′, s′). Indeed, if
(g′′, Z ′′′, s′′) is another choice, then by (M2) applied to s′ and s′′, we get is′ = i′s′′
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with i : Z ′′ → V , i′ : Z ′′′ → V , i in S. Since ig′s = is′g = is′′g = ig′′s, applying
(M3) to (ig′, i′g′′), we get v : V → V ′ in S such that vig′ = vi′g′′. Thus we get
(g′, Z ′′, s′) ∼ (vig′, V ′, vis′) = (vi′g′′, V ′, vi′s′′) ∼ (g′′, Z ′′′, s′′), so that (g′f, Z ′′, s′t) ∼
(g′′f, Z ′′′, s′′t). The identity X → X is given by (idX , X, idX). To check the associa-
tivity of the composition, we apply (M2) to get the commutative diagram

W ′′′

Z ′′

h′′
<<

W ′′

s′′
bb

Y ′

g′
==

Z ′

s′
bb

h′
<<

W ′

t′
bb

X

f
>>

Y

s

aa
g

<<

Z

t

bb
h

<<

W.

u

aa

Consider the functor F : C → D carrying X to X and f : X → Y to [f, Y, idY ].
It remains to show that the pair (D, F ) solves the same universal problem for

(C[S−1], Q). For s : X → Y in S, F (s) = [s, Y, idY ] has an inverse given by [idY , Y, s].
For any functor F ′ : C → D′ such that F ′(s) is invertible for all s in S, we define
G : D → D′ by G([f, Y ′, s]) = F ′(s)−1F ′(f). Note that for a morphism (f, Y ′, s)→
(f ′, Y ′′, s′), we have F ′(s)−1F ′(f) = F ′(s′)−1F ′(f ′). Thus the definition of G does
not depend on the choice of (f, Y ′, s). Moreover, F ′ = GF . The uniqueness of G is
clear.

Remark 2.4.6. Dually, if S is a left multiplicative system, then (S/X)op is a filtered
category for any object X and the map

colim
(X′,s)∈(S/X)op

HomC(X ′, Y )→ HomC[S−1](X, Y )

carrying a map f : X ′ → Y indexed by s : X ′ → X to Q(f)Q(s)−1 is a bijection for
objects X and Y in C. If S is a multiplicative system, then the map

colim
(X′,Y ′)∈(S/X)op×SY ′/

HomC(X ′, Y ′)→ HomC[S−1](X, Y )

carrying a map f : X ′ → Y ′ indexed by s : X ′ → X and t : Y → Y ′ toQ(t)−1Q(f)Q(s)−1

is a bijection for objects X and Y in C.

Remark 2.4.7. If S is a right multiplicative system and C admits finite coproducts,
then C[S−1] admits finite coproducts and the localization functor Q : C → C[S−1]
preserves finite coproducts by the proposition. Indeed, if X = ∐

iXi is a finite
coproduct in C, then we have a commutative square of bijections

colim(Y ′,s)∈SY/
HomC(X, Y ′) HomC[S−1](X, Y )

colim(Y ′,s)∈SY/

∏
i HomC(Xi, Y

′) ∏
i colim(Y ′,s)∈SY/

HomC(Xi, Y
′) ∏

i HomC[S−1](Xi, Y )

∼

≃

∼ ∼
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Dually, if S is a left multiplicative system and C admits finite products, then
C[S−1] admits finite products and the localization functor Q : C → C[S−1] preserves
finite products by the proposition.

If S is a multiplicative system of an additive category A, then A[S−1] is an
additive category and the localization functor Q : A → A[S−1] is an additive functor.

Localization of triangulated categories
Let D be a triangulated category and let N be a full triangulated subcategory. We
let SN = SD

N denote the collection of morphisms f : X → Y in D such that there
exists a distinguished triangle X f−→ Y → Z → X[1] in D with Z in N .

Proposition 2.4.8. SN is a multiplicative system.

Proof. We check the axioms of a right multiplicative system.
(M1) Since there exists a zero object in N , idX is in SN by (TR1b). Let f : X →

Y , g : Y → Z be in SN . There exist distinguished triangles X f−→ Y → U → X[1],
Y

g−→ Z → W → Y [1] with U and W in N . By (TR1c), there exists a distinguished
triangle X gf−→ Z → V → X[1]. By (TR4), there exists a distinguished triangle
U → V → W → U [1]. Thus V is isomorphic to an object of N . By (TR2), it
follows that gf is in SN .

(M2) Let f : X → Y , s : X → X ′ with s in SN . By (TR2), there exists a
distinguished triangle Z g−→ X

s−→ X ′ → Z[1] with Z in N . Applying (TR1c) and
(TR3), we obtain a morphism of distinguished triangles

Z
g //

idZ

��

X s //

f

��

X ′ //

��

Z[1]
idZ[1]
��

Z
fg // Y t // Y ′ // Z[1].

By (TR2), t is in SN .
(M3) It suffices to show that for f : X → Y such that there exists s : W → X

in SN with fs = 0, there exists t : Y → Z in SN such that tf = 0. We have a
distinguished triangle W s−→ X

g−→ X ′ → W [1] with X ′ in N . By the long exact
sequence of HomD, there exists f ′ : X ′ → Y such that f = f ′g. By (TR1c), we get
a distinguished triangle X ′ f ′

−→ Y
t−→ Z → X ′[1]. By (TR2), t is in SN . Moreover,

tf ′ = 0 so that tf = 0.
Similarly one shows that SN is a left multiplicative system.

We write D/N = D[S−1
N ]. Let Q : D → D/N be the localization functor. The

composition D [1]−→ D Q−→ D/N carries SN to isomorphisms and thus factors uniquely
through a functor [1] : D/N → D/N . We say that a triangle inD/N is distinguished
if it is isomorphic to the image of a distinguished triangle in D under Q.

Proposition 2.4.9. (1) D/N is a triangulated category and Q : D → D/N is a
triangulated functor.
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(2) For any object X of N , QX is a zero object. Moreover, for any triangulated
functor F : D → D′ such that FX ≃ 0 for every object X of N , there exists a
unique triangulated functor G : D/N → D′ such that F = GQ.

(3) For any cohomological functor H : D → A such that HX ≃ 0 for every object
X of N , there exists a unique cohomological functor I : D/N → A such that
H = IQ.

We call D/N the quotient category of D by N .

Proof. (1) The axioms for D/N follow from the axioms for D. This is clear for
(TR1), (TR2), and (TR3). For (TR4), we note that there exists a commutative
diagram in D/N

X Y Z

X ′ Y ′ Z ′

f

u

g

v w

Q(f̃) Q(g̃)

where the vertical arrows are isomorphisms. Indeed, for f = Q(f̃)Q(s)−1 and g =
Q(t)−1Q(g̃), where s, t ∈ SN , we can take u = Q(s)−1, v = idY , and w = Q(t).
Using the claim and Corollary 2.3.14 (which depends on (TR3)), we reduce (TR4)
to the case where the triangles are images of distinguished triangles in D, which
follows from (TR4) for D. It is clear that Q is a triangulated functor.

(2) This follows from the universal property for the localization and the fact
that, for any triangulated functor F : D → D′, FX ≃ 0 for every object X of N if
and only if Ff is an isomorphism for every morphism f in SN .

(3) For any distinguished triangle X f−→ Y → Z → X[1] in D with Z in N , it
follows from the exactness of the sequence

0 = H−1Z → HX
Hf−−→ HY → HZ = 0

that Hf is an isomorphism. We conclude by the universal property for the localiza-
tion.

Definition 2.4.10. A full triangulated subcategory N of a triangulated category D
is said to be thick (“saturated” in the terminology of Verdier’s thesis [V2, II.2.1.6])
if it is stable under direct summands in D.

Remark 2.4.11. Let F : D → D′ be a triangulated functor. We let ker(F ) denote
the kernel of F , namely the full subcategory of D spanned by objects X such that
FX ≃ 0. Then ker(F ) is a thick subcategory of D. Moreover F can be decomposed
as D Q−→ D/ ker(F ) G−→ D′, where ker(G) is spanned by zero objects.

Remark 2.4.12. Let N be a full triangulated subcategory of D. It was shown in
Verdier’s thesis [V2, Corollaire II.2.2.11] (and independently by Rickard) that the
following conditions are equivalent:

(1) N is thick.
(2) N = ker(Q : D → D/N ) (namely, an object X of D/N is zero if and only if

X is in N ).
It follows that in general ker(Q : D → D/N ) is the smallest thick subcategory of D
containing N .



78 CHAPTER 2. DERIVED CATEGORIES AND DERIVED FUNCTORS

2.5 Derived categories
Let A be an abelian category. We let N(A) denote the full subcategory of K(A)
consisting of acyclic complexes. Then N(A) is a triangulated subcategory of K(A).

Definition 2.5.1. We call D(A) = K(A)/N(A) the derived category of A.

By definition, D(A) = K(A)[S−1], where S = SN(A). For a distinguished triangle
X

f−→ Y → Z → X[1] in K(A), Z is acyclic if and only if f is a quasi-isomorphism,
by the long exact sequence. Thus S is the collection of quasi-isomorphisms in K(A).
Objects of D(A) are complexes in A and we have

HomD(A)(X, Y ) ≃ colim
(Y ′,s)∈SY/

HomC(X, Y ′) ≃ colim
(X′,s)∈(S/X)op

HomC(X ′, Y ).

In general, D(A) does not have small Hom sets, even if A has small Hom sets. See
however Remark 2.5.25 below.

Moreover, D(A) is a triangulated category and the localization functor K(A)→
D(A) is triangulated. A triangle in D(A) is distinguished if and only if it is isomor-
phic to a standard triangle X f−→ Y

i−→ Cone(f) p−→ X[1], where f is a morphism of
complexes.

Remark 2.5.2. Let S̃ denote the collection of quasi-isomorphisms in C(A). There
exists a unique functor F : C(A)[S̃−1]→ D(A) rending the diagram

C(A) K(A)

C(A)[S̃−1] D(A).F

commutative. Here the unnamed arrows are the canonical functors. One can show
that F is an isomorphism of categories. See [M3, Theorem 3.2.1].

The cohomological functors Hn : K(A) → A carry acyclic complexes to zero,
and hence induce cohomological functors

Hn : D(A)→ A.

For any distinguished triangle X → Y → Z → X[1] in D(A), we have a long exact
sequence

(2.5.1) · · · → HnX → HnY → HnZ → Hn+1X → · · · .

The functors τ≤n, τ≥n : K(A)→ K(A)→ D(A) induce additive functors

τ≤n, τ≥n : D(A)→ D(A).

These are not triangulated functors unless all objects of A are zero objects.

Proposition 2.5.3. (1) A morphism f : X → Y in D(A) is an isomorphism if
and only if Hnf is an isomorphism for all n.
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(2) An object Z of D(A) is a zero object if and only if HnZ is zero for all n.

Proof. By Corollary 2.3.16, given a distinguished triangle X f−→ Y → Z → X[1] in
D(A), f is an isomorphism and only if Z is zero. By the long exact sequence (2.5.1),
Hnf is an isomorphism if and only if HnZ is zero for all n. Thus (1) and (2) and
equivalent. The “only if” parts of (1) and (2) are trivial. The “if” part of (2) is also
trivial.
Example 2.5.4. For any short exact sequence of complexes 0→ X

f−→ Y
g−→ Z → 0,

we have an isomorphism of triangles in D(A)

X Y Cone(f) X[1]

X Y Z X[1]

f i p

ϕ

f g h

where i and p are the canonical morphisms, ϕ is the quasi-isomorphism defined by
ϕn = (0, gn) (Proposition 2.1.25), and h = pϕ−1. Thus

X
f−→ Y

g−→ Z
h−→ X[1]

is a distinguished triangle in D(A). By Remark 2.1.26, the long exact sequence
associated to it is

HnX
Hnf−−→ HnY

Hng−−→ HnZ
−δ−→ Hn+1X,

where δ is the connecting morphism in the long exact sequence associated to the
short exact sequence.
Remark 2.5.5. For a short exact sequence 0→ X → Y → Z → 0 in A, identified
with C [0,0](A), we get a morphism h : Z → X[1] in D(A). We have Hnh = 0 for
every n, but h is not the zero morphism unless the short exact sequence splits.
Example 2.5.6. Let X be a complex and let a ≤ b < c, where a ∈ Z ∪ {−∞},
b ∈ Z, c ∈ Z ∪ {+∞}. The short exact sequence of complexes

0→ σ[b+1,c]X → σ[a,b]X → σ[a,c]X → 0

induces a distinguished triangle in D(A)

σ[b+1,c]X → σ[a,b]X → σ[a,c]X → (σ[b+1,c]X)[1]

Example 2.5.7. Let X be a complex and let b be an integer. We have a short exact
sequence of complexes

0→ τ≤bX → X → X/τ≤bX → 0.

Although X/τ≤bX is in C≥b(A) but not in C≥b+1(A) in general, the morphism of
complexes X/τ≤bX → τ≥b+1X is a quasi-isomorphism. Thus we get a distinguished
triangle in D(A)

τ≤bX → X → τ≥b+1X → (τ≤bX)[1].
For a ≤ b < c (a could be −∞ and c could be +∞), applying the above to τ [a,c]X,
we get a distinguished triangle in D(A)

τ [a,b]X → τ [a,c]X → τ [b+1,c]X → (τ [a,b]X)[1].
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Notation 2.5.8. Let I ⊆ Z be an interval. We let DI(A) denote the full subcat-
egory of D(A) consisting of complexes X such that HnX = 0 for n ̸∈ I. We let
D+(A) (resp. D−(A), resp. Db(A)) denote the full subcategory of D(A) consisting
of complexes X such that HnX = 0 for n≪ 0 (resp. n≫ 0, resp. |n| ≫ 0).

The full subcategories D+(A), D−(A), Db(A) are triangulated subcategories of
D(A).

Proposition 2.5.9. The functor H0 : D[0,0](A)→ A is an equivalence of categories.

Proof. Consider the functor F : A → D[0,0](A) carrying A to a complex X concen-
trated in degree 0 with X0 = A. We have H0FA ≃ A. For any complex X in
D[0,0](A), we have X ≃ τ [0,0]X ≃ FH0X.

To give descriptions of D∗(A) in terms of K∗(A), we need a general result on
colimits.

Definition 2.5.10. We say that a category C is connected if for every pair of objects
X and Y , there exists a sequence of objects X = X0, . . . , Xn = Y such that for each
0 ≤ i ≤ n−1, there exists either a morphism Xi → Xi+1 or a morphism Xi+1 → Xi.
We say that a functor ϕ : J → I is cofinal if (i ↓ ϕ) is nonempty and connected for
every object i of I. We say that a subcategory is cofinal if the inclusion functor is
cofinal.

Proposition 2.5.11. Let ϕ : J → I be a functor of categories. The following con-
ditions are equivalent:

(1) ϕ is cofinal.
(2) For every functor F : I → C, the functor CF/ → CFϕ/ carrying (X, (fi : Fi →

X)) to (X, (fϕ(j) : Fϕ(j)→ X)) is an isomorphism of categories.
(3) For every functor F : I → C and every colimit diagram (X, (fi : Fi → X)) of

F , (X, (fϕ(j) : Fϕ(j)→ X)) is a colimit diagram of Fϕ.

Proof. (1) =⇒ (2). We construct an inverse CFϕ/ → CF/ as follows. Let

(X, (gj : Fϕ(j)→ X))

be an object of CFϕ/. For each object i of I, and each object x = (j, α : i→ ϕ(j)) of
(i ↓ ϕ), we put fi,x = gjF (α) : F (i)→ X. For a morphism β : x→ x′ = (j′, α′),

fi,x = gjF (α) = gj′Fϕ(β)F (α) = gj′F (α′) = fi,x′ .

Since (i ↓ ϕ) is nonempty and connected, fi,x is independent of x and we let fi
denotes the common value. For a morphism a : i → i′ in I, and for x = (j, α′) in
(i′ ↓ ϕ),

fi′F (a) = gjF (α′)F (a) = gjF (α′a) = fi

since (j, α′a) is in (i ↓ ϕ). We have thus constructed an object (X, (fi : F (i)→ X))
of CF/. This construction is clearly functorial and provides the inverse as claimed.

(2) =⇒ (3). This follows from the definition of colimit: a colimit diagram of F
is by definition an initial object of CF/ and similarly for Fϕ.
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(3) =⇒ (1). We take C to be the category of sets in a universe for which the
Hom sets of I are small. Let i be an object of I and let F = HomI(i,−) : I → C.
The set colimF = colimi′∈I HomI(i, i′) can be identified with the set of connected
components of the category Ci/, which is a singleton because Ci/ admits the initial
object (i, idi). By (3), colimFϕ = colimj∈J HomI(i, ϕ(j)), which can be identified
with the set of connected components of (i ↓ ϕ), is a singleton. In other words,
(i ↓ ϕ) is connected.

Example 2.5.12. If I admits a final object i, then the functor {∗} → I carrying ∗
to i is cofinal. In this case, for any functor F : I → C, F (i) is a colimit of F .

Proposition 2.5.13. Let I be a filtered category and let J be a full subcategory. Let
ι : J → I be the inclusion functor. Then J is a cofinal subcategory of I if and only
if for every object i of I, there exist an object j in J and a morphism i→ j. In this
case, J is a filtered category.

The first assertion means the inclusion functor ι is cofinal if and only if (i ↓ ι) is
nonempty for every object i of I.

Proof. The “only if” part of the first assertion is trivial. To show the “if” part of
the first assertion, let (i, a : i → j) and (i, a′ : i → j′) be objects of (i ↓ ι). Since
I is filtered, there exist an object k of I and morphisms b : j → k, b′ : j′ → k.
Furthermore, since I is filtered, we may assume ba = b′a′. By assumption, we may
assume that k is in J . Then we get morphisms (j, a) b−→ (k, ba) b′

←− (j′, a′) in (i ↓ ι).
Now let J be a cofinal full subcategory of I. For j and j′ in J , there exist an

object k in I and morphisms j → k, j′ → k. By the cofinality of J , we may assume
that k is in J . For j ⇒ j′ in J , there exists j′ → k in I equalizing the arrows. By
the cofinality of J , we may assume that k is in J .

For Y ∈ D∗(A), where ∗ is + or ≥ n, we let S∗
Y/ denote the full subcategory of

SY/ consisting of pairs (Y ′, s : Y → Y ′) such that Y ′ ∈ K∗(A). For X ∈ D∗(A),
where ∗ is − or ≤ n, we let S∗

/X denote the full subcategory of S/X consisting of
pairs (X ′, s : X ′ → X) such that X ′ ∈ K∗(A).

Proposition 2.5.14. (1) Let ∗ be + or ≥ n. Let Y be a complex in D∗(A). Then
S∗
Y/ is a cofinal full subcategory of SY/.

(2) Let ∗ be − or ≤ n. Let X be a complex in D∗(A). Then (S∗
/X)op is a cofinal

full subcategory of (S/X)op.

Proof. We treat the case where ∗ is ≥ n, the other cases being similar. Let Y be in
D≥n(A) and let (Y ′, a : Y → Y ′) be a quasi-isomorphism. Then f : Y ′ → τ≥nY ′ =
Y ′′ provides a morphism (Y ′, a)→ (Y ′′, fa) in SY/ with (Y ′′, fa) in S≥n

Y/ .

Corollary 2.5.15. Let ∗ be +, −, or b. The functor K∗(A) → D∗(A) induces
an equivalence of triangulated categories K∗(A)/N∗(A) → D∗(A), where N∗(A) =
N(A) ∩K∗(A).

Proof. The functor is clearly essentially surjective, because every object of D∗(A)
is isomorphic to a truncation in the image of K∗(A). It remains to show that the
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functor is fully faithful. We first treat the case ∗ = +. For X, Y in K+(A), by the
cofinality of S+

Y/ in SY/, we have

HomK+(A)/N+(A)(X, Y ) ≃ colim
Y ′∈S+

Y/

HomK(A)(X, Y ′)

≃ colim
Y ′∈SY/

HomK(A)(X, Y ′) ≃ HomD+(A)(X, Y ).

The case ∗ = − is similar. (See Lemma 2.5.20 for a formalization of the argument
here.)

Finally let ∗ = b. Let X, Y ∈ K [m,n](A). We construct an inverse of the map

HomKb(A)/Nb(A)(X, Y ) ≃ colim
(X′,Y ′)∈(Sb

/X
)op×Sb

Y/

HomK(A)(X ′, Y ′)

→ colim
(X′,Y ′)∈(S/X)op×SY/

HomK(A)(X ′, Y ′) ≃ colim
(X′,Y ′)∈(S≤n

/X
)op×S≥m

Y/

HomK(A)(X ′, Y ′)

≃ HomDb(A)(X, Y )

For X ′ ∈ K≤n(A) and Y ′ ∈ K≥m(A), any morphism of complexes f : X ′ → Y ′

factorizes as
X ′ → τ≥m−1X ′ g−→ τ≤n+1Y ′ → Y ′.3

It is easy to check that f 7→ g provides the inverse as claimed.

Corollary 2.5.16. Let X be an object of D≤n(A) and let Y be an object of D≥n+1(A).
Then HomD(A)(X, Y ) = 0.

Proof. Indeed, HomD(A)(X, Y ) ≃ colim(X′,Y ′)∈(S≤n
/X

)op×S≥n+1
Y/

HomK(A)(X ′, Y ′) = 0.

Warning 2.5.17. Under the assumptions of Corollary 2.5.16, we do not have
HomD(A)(Y,X) = 0 in general. See Remark 2.5.5 for a counterexample.

Corollary 2.5.18. For X in D≤n(A), Y in D(A), Z in D≥n(A), the maps

HomD(A)(X, τ≤nY )→ HomD(A)(X, Y ), HomD(A)(τ≥nY, Z)→ HomD(A)(Y, Z)

are isomorphisms.

Thus the functor τ≤n : D(A)→ D≤n(A) is a right adjoint of the inclusion functor
D≤n(A)→ D(A); the functor τ≥n : D(A)→ D≥n(A) is a left adjoint of the inclusion
functor D≥n(A)→ D(A).

Proof. The distinguished triangle τ≤nY → Y → τ≥n+1Y → (τ≤nY )[1] induces a
long exact sequence

Hom(X, (τ≥n+1Y )[−1])→ Hom(X, τ≤nY )→ Hom(X, Y )→ Hom(X, τ≥n+1Y ).

Since τ≥n+1Y and (τ≥n+1Y )[−1] are in D≥n+1(A), the first and fourth terms are
zero. The first assertion follows. The proof of the second assertion is similar.

3In fact, f even factorizes as X ′ → τ≥mX ′ → τ≤nY ′ → Y ′.
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Resolutions
Part (1) of the following theorem generalizes the construction of injective resolutions.

Theorem 2.5.19. Let J ⊆ A be a full additive subcategory. Assume that for every
object X of A, there exists a monomorphism X → Y with Y in J .

(1) For every K ∈ C≥n(A), there exist L ∈ C≥n(J ) and a quasi-isomorphism
f : K → L such that τ≥mf is a monomorphism of complexes for each m.

(2) The functor K+(J ) → D+(A) induces an equivalence of triangulated cate-
gories

K+(J )/N+(J )→ D+(A),
where N+(J ) = N(A) ∩K+(J ).

In (1) the condition on τ≥mf means that f is a monomorphism of complexes
and the morphism Ki/BiK → Li/BiL induced by f is a monomorphism for each i.
In (2) N+(J ) is a thick triangulated subcategory of K+(J ).

Proof. (1) It suffices to construct Lm = (· · · → Lm → 0 → · · · ) ∈ C [n,m](J ) and
a morphism fm : K → Lm of complexes for each m such that f im and Ki/BiK →
Li/BiL are monomorphisms for each i ≤ m, H ifm is an isomorphism for each i < m,
Lm = σ≤mLm+1 and fm equals the composite K fm+1−−−→ Lm+1 → Lm. We proceed
by induction on m. For m < n, we take Lm = 0. Given Lm, we construct Lm+1 as
follows. Form the pushout square

Km/BmK //

��

Lm/BmL

��
Km+1 // X.

By induction hypothesis, the upper horizontal arrow is a monomorphism. It follows
that we have a commutative diagram

0 // Km/BmK //

��

Lm/BmL

��

// Z // 0

0 // Km+1 // X // Z // 0

with exact rows. By assumption, there exists a monomorphism X → Lm+1 with
Lm+1 in J . We define fm+1 : Km+1 → Lm+1 and dmL : Lm → Lm+1 by the obvious
compositions. Then fm+1 is a morphism of complexes. It is clear that fm+1 is
a monomorphism. Applying the snake lemma to the above diagram, we see that
Km+1/Bm+1K → Lm+1/Bm+1L is a monomorphism and Hmf is an isomorphism.

(2) This follows from (1) and the following lemma.

Lemma 2.5.20. Let K be a triangulated category and let N , J be full triangulated
subcategories of K, with Ob(N ) stable under isomorphisms. Assume that for each
Y ∈ K, there exists a morphism Y → Y ′ in SN such that with Y ′ ∈ J . Then
the triangulated functor F : J /J ∩ N → K/N is an equivalence of triangulated
categories.
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Proof. By assumption, F is essentially surjective. Let us show that F is fully faithful.
For Y ∈ J , the full subcategory (SJ

N )Y/ ⊆ (SN )Y/ consisting of pairs (Y, f : Y → Y ′)
with Y ′ ∈ J is cofinal. Moreover, if Y f−→ Y ′ → Y ′′ → Y [1] is a distinguished
triangle in J extending such an f , then Y ′′ is in J ∩N , since Ob(N ) is stable under
isomorphisms. Thus (SJ

N )Y/ = (SJ
J ∩N )Y/. For X in J , F induces

HomJ /J ∩N (X, Y ) ≃ colim
Y ′∈(SJ

J ∩N )Y/

HomJ (X, Y ′)

≃ colim
Y ′∈(SN )Y/

HomK(X, Y ′) ≃ HomK/N (X, Y ).

Dually we have the following.

Theorem 2.5.21. Let J ⊆ A be a full additive subcategory. Assume that for every
object X of A, there exists an epimorphism Y → X with Y in J .

(1) For every K ∈ C≤n(A), there exist L ∈ C≤n(J ) and a quasi-isomorphism
f : L→ K such that τ≤mf is an epimorphism of complexes for each m.

(2) The functor K−(J ) → D−(A) induces an equivalence of triangulated cate-
gories

K−(J )/N−(J )→ D−(A),
where N−(J ) = N(A) ∩K−(J ).

Corollary 2.5.22. Let A be an abelian category with enough injectives. We let I
denote the full subcategory of A consisting of injective objects. Then the triangulated
functor K+(I)→ D+(A) is an equivalence of triangulated categories.

It follows that for X, I ∈ K+(I), HomK(A)(X, I) ∼−→ HomD(A)(X, I). This ex-
tends toX ∈ K(A) and for this the assumption onA can be dropped by Propositions
2.5.26 and 2.5.28 below.

Proof. This follows from Theorem 2.5.19 and the lemma below.

Lemma 2.5.23. Let A be an abelian category. We let I denote the full subcategory
of A consisting of injective objects. Then N+(I) is equivalent to zero.

Proof. Let L ∈ K+(I) be an acyclic complex. Then L breaks into short exact
sequences

0→ ZnL→ Ln → Zn+1L→ 0.
One shows by induction on i that ZnL is injective and the sequence splits. Thus L
is homotopy equivalent to 0.

Dually we have the following.

Corollary 2.5.24. Let A be an abelian category with enough projectives. We let
P denote the full subcategory of A consisting of projective objects. Then N−(P) is
equivalent to zero and the triangulated functor K−(P)→ D−(A) is an equivalence of
triangulated categories. Moreover, for L ∈ K(A), P ∈ K−(P), HomK(A)(P,L) ∼−→
HomD(A)(P,L).
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Remark 2.5.25. By the corollaries, if A has small Hom sets and admits enough
injectives (resp. projectives), then D+(A) (resp. D−(A)) has small Hom sets.

Proposition 2.5.26. Let A be an abelian category. For any complex I, the following
conditions are equivalent:

(1) HomK(A)(X, I) = 0 for all X ∈ N(A).
(2) HomK(A)(X, I)→ HomD(A)(X, I) is an isomorphism for all X ∈ K(A).

Proof. (2) =⇒ (1). Clear.
(1) =⇒ (2). We have HomD(A)(X, I) ≃ colim(X′,s)∈(S/X)op HomK(A)(X ′, I). Ap-

plying (1) to the cone of s, we see that HomK(A)(s, I) : HomK(A)(X, I)→ HomK(A)(X ′, I)
is an isomorphism.

Definition 2.5.27. A complex I is said to be homotopically injective if it satisfies
the conditions of the above proposition.

We let Khi(A) ⊆ K(A) denote the full subcategory spanned by homotopically
injective complexes. The functor Khi(A)→ D(A) is fully faithful.

Proposition 2.5.28. Let I ⊆ A denote the full subcategory consisting of injective
objects. Let X ∈ N(A), I ∈ K(I). Assume X ∈ K+(A) or I ∈ K+(A). Then
HomK(A)(X, I) = 0. In particular, we have K+(I) ⊆ Khi(A).

Proof. Let f : X → I be a morphism of complexes. We construct a homotopy h
satisfying

(∗n) fn = hn+1dnX + dn−1
I hn

for all n as follows. Assume X ∈ K≥m(A) or I ∈ K≥m(A). For n ≤ m, we take
hn = 0. Then (∗n) holds for n < m. for For a general n, assume hn constructed
satisfying (∗n−1). Then

(fn − dn−1
I hn)dn−1

X = dn−1
I fn−1 − dn−1

I (fn−1 − dn−2
I hn−1) = 0.

Thus fn− dn−1
I hn factorizes via dn : Xn/BnX

∼−→ Zn+1X through gn : Zn+1X → In.
We take hn+1 : Xn+1 → In to be an extension of gn. Then (∗n) holds.

Dually one defines homotopically projective complexes.

Grothendieck categories
Definition 2.5.29. Let C be a category and let G be an object of C. We say that
G is a generator of C if every morphism f : X → Y such that HomC(G,X) →
HomC(G, Y ) is a bijection is an isomorphism.

Definition 2.5.30. A Grothendieck category is an abelian category A with small
Hom sets admitting a generator and satisfying the following axiom:

(AB5) A admits small colimits and small filtered colimits are exact.
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Example 2.5.31. Let R be a small ring and X a small topological space. The
categories R-Mod and Shv(X) are Grothendieck categories. The R-module R is a
generator of R-Mod. A generator of Shv(X) is ⊕U ZU , where U runs through open
subsets of X, and ZU = a(Z′

U), where Z′
U is the presheaf carrying V ⊆ U to Z and

other V to 0. Indeed, HomShv(X)(ZU ,F) ≃ F(U).
For R nonzero, R-Modop is not a Grothendieck category. For X nonempty,

Shv(X)op is not a Grothendieck category. Indeed, sequential limit limNop is not
exact in R-Mod or Shv(X).

Theorem 2.5.32 (Grothendieck [G, Théorème 1.10.1]). Grothendieck categories
admit enough injectives.

Theorem 2.5.33. Let A be a Grothendieck category. There are enough homotopi-
cally injective complexes: for every complex I in A, there exists a quasi-isomorphism
I → I ′ with I ′ homotopically injective. In particular, the functor Khi(A) → D(A)
is an equivalence of categories.

It follows from the theorem that D(A) has small hom-sets when A does. We
refer the reader to [KS2, Corollary 14.1.8] for a proof (of a generalization) of the
theorem.

Proposition 2.5.34. An abelian category A admitting a generator and small col-
imits (for example, a Grothendieck category) satisfies

(AB3*) A admits small limits.

We refer the reader to [KS2, Proposition 5.2.8, Corollary 5.2.10] for a general-
ization of the proposition to categories that are not necessarily abelian categories.

Lemma 2.5.35. Let C be a category with small Hom-sets and admitting a generator
G and fiber products. Then for any object X, the set of subobjects of X is small.

By a subobject of X, we mean an isomorphism class of objects (Y, i) of C/X with
i a monomorphism.

Proof. Consider the map ϕ from the set of subobjects of X to the set of subsets of
Hom(G,X) carrying a subobject Y of X to im(Hom(G, Y ) → Hom(G,X)). Since
Hom(G,X) is a small set, it suffices to show that ϕ is an injection. If ϕ(Y ) = ϕ(Y ′),
then Hom(G, pY ) and Hom(G, pY ′) are bijections. Here pY : Y ×X Y ′ → Y and
pY ′ : Y ×X Y ′ → Y ′ are the projections. Thus pY and pY ′ are isomorphisms. It
follows that Y equals Y ′ as subobjects of X.

Lemma 2.5.36. Let C be a category with small Hom-sets and admitting a gener-
ator G and equalizers. Let X be an object such that G⨿Hom(G,X) exists. Then the
morphism G⨿Hom(G,X) → X is an epimorphism.

Proof. Indeed, Hom(G,−) is faithful and the map Hom(G,G⨿Hom(G,X))→ Hom(G,X)
is surjective.
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Proof of Proposition 2.5.34. Let F : I → A be a small diagram. The category A/F
admits small colimits and the forgetful functor A/F → A preserves such colimits.
We need to show that it admits a final object. By Theorem 1.4.19 applied to (A/F )op,
it suffices to find a small set of objects of A/F that is weakly final. For any object
X of A, Nat(∆X,F ) is a small set. Let Z = G⨿Nat(∆G,F ). There is an obvious
morphism ∆Z → F . For any cone u : ∆X → F , form the pushout

G⨿Hom(G,X) //

��

Z

��
X // Y

in A. The morphism X → Y lifts to a morphism with source (X, u) in A/F . By
Lemma 2.5.36, the vertical arrow on the left is an epimorphism. It follows that the
same holds for the vertical arrow on the right. Thus the set of cones v : ∆Y → F
with Y a quotient of Z is weakly final and it suffices to apply Lemma 2.5.35.

2.6 Extensions
Let A be an abelian category.

Notation 2.6.1. For K,L ∈ D(A), the hyper Ext groups are defined to be

Extn(K,L) = HomD(A)(K,L[n]).

For n = 0, Ext0(K,L) = HomD(A)(K,L).
We are particularly interested in the case where K = X and L = Y are objects

of A, regarded as complexes concentrated in degree 0. In this case, we drop the word
“hyper”. For n < 0, Extn(X, Y ) = 0 by Corollary 2.5.16. We have Ext0(X, Y ) ≃
HomA(X, Y ).

For any short exact sequence 0→ Y ′ → Y → Y ′′ → 0 in A, we have long exact
sequences

0→ Hom(X, Y ′)→ Hom(X, Y )→ Hom(X, Y ′′)
→ Ext1(X, Y ′)→ Ext1(X, Y )→ Ext1(X, Y ′′)→ · · · ,

0→ Hom(Y ′′, X)→ Hom(Y,X)→ Hom(Y ′, X)
→ Ext1(Y ′′, X)→ Ext1(Y,X)→ Ext1(Y ′, X)→ · · · .

Remark 2.6.2. We have ExtnAop(X, Y ) ≃ ExtnA(Y,X).

Yoneda extensions
For n ≥ 1, we will now give an interpretation of Extn(X, Y ), which is due to Yoneda
for n ≥ 2.

Definition 2.6.3. Let n ≥ 1. An n-extension of X by Y is an exact sequence

0→ Y → K−n+1 → · · · → K0 → X → 0.
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An extension of Y by X is a 1-extension of Y by X, namely, a short exact sequence

0→ Y → K0 → X → 0.

A morphism of n-extensions of X by Y is a morphism of exact sequences inducing
identities on X and on Y .

By the snake lemma, a morphism of 1-extensions of X by Y is necessarily an
isomorphism. This fails for n-extensions, n ≥ 2 in general. We let En(X, Y ) denote
the set of equivalence classes of n-extensions of X by Y , the equivalence relation
being generated by morphisms.

We have seen how to produce a morphism X → Y [1] in D(A) from an extension
of X by Y . More generally, given an n-extension of X by Y as above, we have a
commutative diagram

· · · // 0 // 0 // · · · // X // · · ·

· · · // Y //

idY

��

OO

K−n+1 //

OO

��

· · · // K0

OO

��

// · · ·

· · · // Y // 0 // · · · // 0 // · · · ,

giving morphisms of complexes X s←− K → Y [n]. Note that s is a quasi-isomorphism,
so that the morphisms induce a morphism X → Y [n] in D(A). If E → E ′ is a
morphism of n-extensions, then E and E ′ induce the same morphism X → Y [n].
We thus obtain a map ϕ : En(X, Y )→ Extn(X, Y ).
Proposition 2.6.4. The map ϕ : En(X, Y )→ Extn(X, Y ) is a bijection.
Proof. We construct an inverse ψ : Extn(X, Y ) → En(X, Y ) as follows. Let X s←−
K

f−→ Y [n] represent a morphism X → Y [n] in D(A). For any quasi-isomorphism
t : K ′ → K, we may replace (s,K, f) by (st,K ′, ft), without changing the class of
(s,K, f). Conversely, if for a quasi-isomorphism t : K → K ′, we have s = s′t and
f = f ′t, then we may replace (s,K, f) by (s′, K ′, f ′). Thus, by truncation, we may
assume that K ∈ C [−n,0](A). Then we have an exact sequence

0→ K−n d−n
K−−→ K−n+1 · · · → K0 s0

−→ X → 0.

Taking the pushout of d−n
K by f−n, we get a commutative diagram in A

(2.6.1)
0 K−n K−n+1 K−n+2 · · · X 0

0 Y K ′−n+1 K−n+2 · · · X 0

d−n
K

f−n

where the second row is also exact. This corresponds to a commutative diagram in
C(A)

K

X K ′ Y [n],

t
s f

f ′
s′
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where s′ and t are quasi-isomorphisms. We define ψ([s,K, f ]) ∈ En(X, Y ) to be
the class of the second row of (2.6.1). Then ϕψ([s,K, f ]) = [s′, K ′, f ′] = [s,K, f ].
Moreover, it is clear that ψϕ(E) = E.

The zero element of Extn(X, Y ) corresponds to the class of the n-extension given
by the direct sum of X id−→ X (put in degrees 0 and 1) and Y

id−→ Y (put in degrees
−n and −n + 1). In particular, 0 ∈ Ext1(X, Y ) corresponds to the class of split
short exact sequences.

Remark 2.6.5. (1) Let f : X ′ → X and g : Y → Y ′ be morphisms. The map
En(X, Y ) → En(X ′, X) corresponding to Extn(f, Y ) is given by taking pull-
back along f . The map En(X, Y ) → En(X,X ′) corresponding to Extn(X, g)
is given by taking pushout along g.

(2) The group structure of Extn(X, Y ) can be described in terms of n-extensions.
Given E,E ′ ∈ E(X, Y ), E + E ′ is obtained from the direct sum of the two
n-extensions by taking pullback along the diagonal (idX , idX) : X → X ⊕ X
and pushout along the sum morphism (idY , idY ) : Y ⊕ Y → Y . (The order of
the two operations does not matter.)

Remark 2.6.6. Let X, Y , Z be objects of A. For E ∈ En(X, Y ), E ′ ∈ Em(Y, Z),
represented by

0→ Y
d−n

K−−→ K−n+1 → · · · → K0 → X → 0,

0→ Z → K ′−m+1 → · · · → K ′0 s′0
−→ Y → 0.

We define E ′′ = E ′ ◦ E ∈ En+m(X, Y ) to be the class of the spliced exact sequence

0→ Z
(−1)nd−m

K′−−−−−−→ K ′−m+1 → · · ·
(−1)nd−1

K′−−−−−→ K ′0 d−n
K s′0

−−−−→ K−n+1 → · · · → K0 → X → 0.

Then ϕ(E ′ ◦E) is the composite X ϕ(E)−−→ Y [n] ϕ(E′)[n]−−−−→ Z[n+m]. Indeed, we have a
commutative diagram

K ′′

g

##

t

}}
K

s

��

f

!!

K ′[n]
s′[n]

{{

f ′[n]

%%
X Y [n] Z[n+m]

with s′′ = st, f ′′ = f ′[n]g, where gi = id for −m − n ≤ i ≤ −n, ti = id for
−n+ 1 ≤ i ≤ 0 and t−n = s′0.

We could define the composition E ′ ◦ E without adding signs. To make it com-
patible with ϕ, we need to modify ϕ by a factor of (−1)n(n+1) (or (−1)n(n−1)).

Corollary 2.6.7. Let X and Y be objects of A and let m,n ≥ 0 be integers. Every
element e′′ ∈ Extn+m(X, Y ) has the form e′′ = e′[n] ◦ e for some object Z of A and
some e ∈ Extn(X,Z), e′ ∈ Extm(Z, Y ).
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Proof. We may assume m,n ≥ 1. An (n+m)-extension of X by Y

0→ Y → K−n−m+1 → · · · → K−n d−n

−−→ K−n+1 → · · · → X → 0

can be decomposed into exact sequences

0→ Y → K−n−m+1 → · · · → K−n → im(d−n)→ 0,
0→ im(d−n)→ K−n+1 → · · · → X → 0.

Homological dimension
Proposition 2.6.8. Let X be an object of A and let m ≥ 0 be an integer. The
following conditions are equivalent:

(1) Extm(X, Y ) = 0 for every object Y of A.
(2) Extn(X, Y ) = 0 for every object Y of A and every n ≥ m.

Dually, for an object Y of A, the following conditions are equivalent:
(1) Extm(X, Y ) = 0 for every object X of A.
(2) Extn(X, Y ) = 0 for every object X of A and every n ≥ m.

Proof. That (2) implies (1) is trivial. That (1) implies (2) follows from Corollary
2.6.7.

Definition 2.6.9. Let X and Y be objects of A. The projective dimension of X
and injective dimension of Y are defined to be

proj.dim(X) = sup{n ∈ Z | Extn(X, Y ) ̸= 0 for some Y },
inj.dim(Y ) = sup{n ∈ Z | Extn(X, Y ) ̸= 0 for some X}.

The homological dimension of A is defined to be

hom.dim(A) = sup{n ∈ Z | Extn(X, Y ) ̸= 0 for some X, Y }.

We adopt the convention sup ∅ = −∞. The above dimensions take values in
Z≥0 ∪ {±∞}. Proposition 2.6.8 gives equivalent conditions for proj.dim(X) < m.
By definition,

hom.dim(A) = sup
X∈A

proj.dim(X) = sup
Y ∈A

inj.dim(Y ).

Remark 2.6.10. The following conditions are equivalent:
• X = 0;
• proj.dim(X) = −∞;
• inj.dim(X) = −∞.

Proposition 2.6.11. The following conditions are equivalent:
(1) proj.dim(X) ≤ 0;
(2) Ext1(X, Y ) = 0 for all Y ;



2.6. EXTENSIONS 91

(3) X is projective.
Proof. (1)⇐⇒ (2). This follows from Proposition 2.6.8.

(2) =⇒ (3). It follows from the long exact sequence that Hom(X,−) is exact.
(3) =⇒ (2). Every short exact sequence 0 → Y → E → X → 0 is split. Thus,

by Proposition 2.6.4, Ext1(X, Y ) = 0.

Dually, the following conditions are equivalent:
(1) inj.dim(Y ) ≤ 0;
(2) Ext1(X, Y ) = 0 for all X;
(3) Y is injective.

Corollary 1.7.5 admits the following extension.
Corollary 2.6.12. Let A be an abelian category. The following conditions are
equivalent:

(1) hom.dim(A) ≤ 0.
(2) Every object of A is projective.
(3) Every object of A is injective.
(4) Every short exact sequence in A is split.

Proposition 2.6.13 (Dimension shifting). Let 0 → X ′ → P−k+1 → · · · → P 0 →
X → 0 be an exact sequence with P i projective. Then Extn(X ′, Y ) ≃ Extn+k(X, Y )
for all Y and all n ≥ 1. In particular,

(2.6.2) max{proj.dim(X ′), 0} = max{proj.dim(X)− k, 0}.

Moreover, if proj.dim(X) ≥ k, then we have

(2.6.3) proj.dim(X ′) = proj.dim(X)− k.

Proof. For the first assertion, decomposing the exact sequence into short exact se-
quence, we reduce by induction to the case k = 1. In this case, the assertion follows
from the long exact sequence

0 = Extn(P 0, Y )→ Extn(X ′, Y )→ Extn+1(X, Y )→ Extn+1(P 0, Y ) = 0.

The first assertion implies that proj.dim(X ′) < n if and only if proj.dim(X) < n+k
for all n ≥ 1, and hence (2.6.2). If proj.dim(X) ≥ k, then X ′ is nonzero (by the
first part of Corollary 2.6.14 below), and (2.6.3) follows.
Corollary 2.6.14. If X has a projective resolution concentrated in [−n, 0] (namely,
there exists an exact sequence 0→ P−n → · · · → P 0 → X → 0 with P i projective),
then proj.dim(X) ≤ n. Conversely, if proj.dim(X) ≤ n and A admits enough
projectives, then X has a projective resolution concentrated in [−n, 0].
Proof. The first assertion follows from (2.6.2):

proj.dim(X) ≤ max{proj.dim(P−n), 0}+ n = n.

For the second assertion, by assumption there exists an exact sequence 0→ P−n →
· · · → P 0 → X → 0 with P i projective for i ≥ −n + 1. It the follows from (2.6.2)
that

proj.dim(P−n) ≤ max{proj.dim(X)− n, 0} = 0,
namely P−n is projective.
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Corollary 2.6.15. Consider the following conditions.
(1) hom.dim(A) ≤ 1.
(2) Subobjects of projectives are projective.
(3) Quotients of injectives are injective.

Then (1) =⇒ (2) and (1) =⇒ (3). Moreover, if A admits enough projectives, then
(1)⇐⇒ (2). Dually, if A admits enough injectives, then (1)⇐⇒ (3).

Definition 2.6.16. The left global dimension of a ring R is defined to be

l.gl.dim(R) = hom.dim(R-Mod).

Dually, the right global dimension of a ring R is defined to be

r.gl.dim(R) = hom.dim(Mod-R).

For a commutative ring R, we drop the words “left” and “right” and we denote
the global dimension by gl.dim(R).

Example 2.6.17. The following conditions are equivalent:
(1) R is a semisimple ring;
(2) l.gl.dim(R) ≤ 0;
(3) r.gl.dim(R) ≤ 0.

Example 2.6.18. Recall that a ring R is left hereditary (Corollary 1.8.8) if and only
if submodules of projective R-modules are projective. Thus, taking A = R-Mod in
the above corollary, we get that l.gl.dim(R) ≤ 1 if and only if R is left hereditary.
Moreover, we obtain Proposition 1.8.38.

Dually r.gl.dim(R) ≤ 1 if and only if R is right hereditary. Since there are left
hereditary rings that are not right hereditary, l.gl.dim(R) ̸= r.gl.dim(R) in general.

Proposition 2.6.19. Let A and B be abelian categories, and let F : A → B be
an exact functor preserving projectives. Assume that A admits enough projectives.
Then proj.dim(FX) ≤ proj.dim(X).

Proof. This follows from Corollary 2.6.14.

Example 2.6.20. Let R and S be rings and let MR S be a bimodule such that
MR is projective and MS is flat. Then MR S ⊗S − : S-Mod→ R-Mod is an exact

functor carrying projectives to projectives and HomR( MR S ,−) : R-Mod→ S-Mod
is an exact functor carrying injectives to injectives by Lemma 1.9.17. Thus, for every
S-module N and every R-module L,

proj.dimR(M ⊗S N) ≤ proj.dimS(N), inj.dimS(HomR(M,L)) ≤ inj.dimR(L).

Here are two special cases.
(1) Let R → S be a ring homomorphism such that SR is projective. Then

proj.dimR(N) ≤ proj.dimS(N) for every S-module N .
(2) Let S → R be a ring homomorphism such that RS is flat. Then inj.dimS(L) ≤

inj.dimR(L) for every R-module L.
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Theorem 2.6.21. Let R be a ring. For any R[t]-module N , we have

proj.dimR[t](N) ≤ proj.dimR(N) + 1.

In particular, l.gl.dim(R[t]) ≤ l.gl.dim(R) + 1.

Note that R[t] is a free left R-module, so that proj.dimR(N) ≤ proj.dimR[t](N).

Proof. We may assume that d = proj.dimR(N) < ∞. For d ≥ 1, choose a short
exact sequence of R[t]-modules 0→ N ′ → P → N → 0 such that PR[t] is projective.
Then N ′ ̸= 0 and PR is projective, so that we have identities proj.dimR[t](N ′) =
proj.dimR[t](N) − 1 and proj.dimR(N ′) = d − 1. We are thus reduced to the case
of d− 1. Thus, by induction, we may assume d = 0, namely that NR is projective.
Then (R[t]⊗RN)R[t] is projective. To prove proj.dimR[t](N) ≤ 1, it suffices to check
that the sequence of R[t]-modules

(2.6.4) 0→ R[t]⊗R N
f−→ R[t]⊗R N

g−→ N → 0

is exact, and hence projective resolution of NR[t] . Here g(1⊗n) = n and f(1⊗n) =
t⊗n−1⊗tn. We will show that (2.6.4) is a split short exact sequence of R-modules.
We define R-module homomorphisms s : N → R[t] ⊗R N and r : R[t] ⊗R N →
R[t]⊗R N by s(n) = 1⊗ n and

r(ti ⊗ n) =
∑

j+k+1=i
j,k≥0

tj ⊗ tkn.

It is easy to check that s is a section of g, r is a retraction of f , and idR[t]⊗RN =
fr + sg. We conclude by Remark 1.5.5.

Remark 2.6.22. In fact, we have l.gl.dim(R[t]) = l.gl.dim(R) + 1 (Exercise). We
refer the reader to [GM, Theorem III.5.16] for a categorical statement.

Corollary 2.6.23. For any semisimple ring R, we have l.gl.dim(R[x1, . . . , xn]) ≤ n.

Combining this with the theorem of Quillen and Suslin, we get the following.

Corollary 2.6.24 (Hilbert’s syzygy theorem). Let k be a field and let R = k[x1, . . . , xn].
Then any R-module N admits a free resolution concentrated in [−n, 0]. Moreover,
for any exact sequence

F−n+1 d−n+1
−−−→ F−n+2 → · · · → F 0 → N → 0

of R-modules with F i free, F−n = ker(d−n+1) is free.

Proof. By dimension shifting, proj.dimR(F−n) ≤ 0. In other words, F−n is projec-
tive. We conclude by Theorem 1.8.29.

Here F−n is sometimes called the n-th (or (n−1)-th depending on the convention)
syzygy of the (partial) free resolution of N . The word “syzygy” comes from astron-
omy, in which it describes the alignment of three celestial bodies. The formulation of
the theorem in Hilbert’s 1890 paper [H] is for finitely generated graded R-modules.
It follows from Nakayama’s lemma that finitely generated graded R-modules whose
underlying R-modules are projective are graded free.
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Proposition 2.6.25. Let R be a ring, let M be an R-module, and let n ≥ 0 be an
integer. Then inj.dimR(M) ≤ n if and only if Extn+1

R (R/I,M) = 0 for every left
ideal I of R.

Proof. The “only if” part is clear. For the “if” part, take an exact sequence 0 →
M → I0 → · · · → In−1 → N → 0 with I i injective. Then Ext1

R(R/I,N) ≃
Extn+1

R (R/I,M) = 0. Thus the restriction map HomR(R,N) → HomR(I,N) is
surjective. It follows from Baer’s test that N is injective.

Remark 2.6.26. There is no obvious analogue of the proposition for projective
dimensions. Whitehead asks whether for every abelian group A, Ext1

Z(A,Z) = 0
(which implies Ext1

Z(A,B) = 0 for every finitely generated abelian group B) implies
that A is free (or, equivalently, projective). Shelah proved that Whitehead’s problem
is undecidable within ZFC even assuming the Continuum Hypothesis.

Corollary 2.6.27. For any ring R, we have l.gl.dim(R) = supI proj.dimR(R/I),
where I runs through left ideals of R.

Hyper Ext groups
For K,L ∈ D(A), we have long exact sequences

· · · → Extn(K, τ≤mL)→ Extn(K,L)→ Extn(K, τ≥m+1L)→ Extn+1(K, τ≤mL)→ · · · ,
(2.6.5)

· · · → Extn(τ≥m+1K,L)→ Extn(K,L)→ Extn(τ≤mK,L)→ Extn+1(τ≥m+1K,L)→ · · · .
(2.6.6)

It follows by induction that for K ∈ D−(A) and L ∈ D+(A), Extn(K,L) is ob-
tained from the groups Extn(HkK[−k], H lL[−l]) ≃ Extn+k−l(HkK,H lL) (zero for
all but finitely many pairs (k, l)) by successively taking subquotients and exten-
sions. (A subquotient is a subobject of a quotient.) Here we used the fact that
Extn(τ≤kK, τ≥lL) = 0 for n+ k − l > 0.

Lemma 2.6.28. Assume d = hom.dim(A) <∞. Let K,L ∈ Db(A) with K ∈ D≥k

and L ∈ D≤l. For k − l + n > d, we have Extn(K,L) = 0. For k − l + n = d, the
map Extn(K,L)→ Extn((HkK)[−k], (H lL)[−l]) ≃ Extd(HkK,H lL) is a bijection.

Proof. The first assertion follows from the above description of Extn(K,L). More
explicitly, assume that K ∈ D[k′,k′′] and L ∈ D[l′,l′′]. We proceed by induction on
k′′ − k′ and l′′ − l′. In the case where k′′ = k′ and l′′ − l′, we have K = A[−k′] and
L = B[−l′] for A,B ∈ A, k′ ≥ k, and l′ ≤ l. Then Extn(K,L) = Extk′−l′+n(A,B) =
0, since k′ − l′ + n ≥ k − l+ n > d. For k′′ > k′ or l′′ > l, it suffices to apply (2.6.5)
for m = l′, (2.6.5) for m = l′′, and the induction hypothesis.

The map in the second assertion is the composite of the maps

Extn(K,L)→ Extn((HkK)[−k], L)→ Extn((HkK)[−k], (H lL)[−l]),

which are bijections since Exti(τ≥k+1K,L) = 0 and Exti((HkK)[−k], τ≤l−1L) = 0
for i = n, n+ 1 by the first assertion.
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Proposition 2.6.29. If hom.dim(A) ≤ 1, then for every K ∈ Db(A), and every
integer n, we have we have K ≃⊕n(HnK)[−n].

The decomposition is not canonical. We note that Db(A) is not the direct sum
of A[−n] unless hom.dim(A) ≤ 0.

Proof. Assume that K ∈ D[n,m]. We proceed by induction on m−n. If m = n, then
K ≃ (HnK)[−n]. Assume m > n. Consider the distinguished triangle

τ≤nK → K → τ≥n+1K
h−→ (τ≤nK)[1]

By the lemma, Ext1(τ≥n+1K, τ≤nK) = 0, so that h = 0. It follows that K ≃
τ≤nK ⊕ τ≥n+1K (Exercise). We conclude by the induction hypothesis.

Corollary 2.6.30 (Künneth formula for hyper Ext). Assume hom.dim(A) ≤ 1. For
every K ∈ D−(A) and every L ∈ D+(A), we have a split short exact sequence

0→
⊕

l−k=n−1
Ext1(HkK,H lL) f−→ Extn(K,L) g−→

⊕
l−k=n

Hom(HkK,H lL)→ 0.

In particular, for K ∈ D−(A) and Y ∈ A, we have a split short exact sequence

0→ Ext1(H1−nK,Y )→ Extn(K,Y )→ Hom(H−nK,Y )→ 0.

The exact sequences are canonical, with g carrying a : K → L[n] to the family
of Hka : HkK → Hk+nL (zero for all but finitely many k), and f given by the maps

Ext1(HkK,H lL) ≃ Extn(τ≥kK, τ≤lL)→ Extn(K,L).

Here we used Lemma 2.6.28. The splittings are not canonical.

Proof. We have L ∈ D≥k for some k. Then Extn(K,L) → Extn(τ≥k−nK,L) is
an isomorphism. Thus we may assume K ∈ Db(A). Similarly, we may assume
L ∈ Db(A). Then, by the proposition,

Extn(K,L) ≃
⊕
k,l

Extn+k−l(HkK,H lL).

2.7 Derived functors
Let A and B be abelian categories and let F : A → B be an additive functor. We
have remarked that F extends to an additive functor C(F ) : C(A) → C(B), which
induces a triangulated K(F ) : K(A)→ K(B). The composite

K(A) K(F )−−−→ K(B)→ D(B)

factorizes through a functor D(F ) : D(A)→ D(B) if and only if F is exact. Indeed,
F is exact if and only if it carries N(A) into N(B), as acyclic complexes break
into short exact sequences. Note that D(F ) is equipped with the structure of a
triangulated functor. Even when F is not exact, it is possible to define a localization
of K(F ) in many cases.
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Definition 2.7.1. Let F : K → K′ be a triangulated functor and let N ⊆ K, N ′ ⊆
K′ be full triangulated subcategories. Let Q : K → K/N and Q′ : K′ → K′/N ′ be the
localization functors. A right derived functor of F with respect to N and N ′ is an
initial object of (Q′F ↓ −Q), where −Q : TrFun(K/N ,K′/N ′)→ TrFun(K,K′/N ′)
is the functor induced by composition with Q. In other words, a right derived
functor is a pair (RF, ϵ), where RF : K/N → K′/N ′ is a triangulated functor, and
ϵ : Q′F → (RF )Q is a natural transformation of triangulated functors, as shown in
the diagram

K K/N

K′ K′/N ′,

Q

F
ϵ⇒ RF

Q′

such that for every pair (G, η), where G : K/N → K′/N ′ is a triangulated functor
and η : Q′F → GQ is a natural transformation of triangulated functors, there exists
a unique natural transformation of triangulated functors α : RF → G such that
η = (αQ)ϵ.

Dually, a left derived functor of F with respect to N and N ′ is a final object of
(−Q ↓ Q′F ).

Right (resp. left) derived functors of F with respect to N and N ′ are unique up
to unique natural isomorphism.
Remark 2.7.2. • The above definition depends on the category K′ only via its

localization K′/N ′.
• A similar notion of derived functors can be defined for (non-triangulated)

localizations of categories C → C[S−1].
Proposition 2.7.3. Let F : K → K′ be a triangulated functor and let N ⊆ K, N ′ ⊆
K′ be full triangulated subcategories such that Ob(N ) stable under isomorphisms.
Let J ⊆ K be a full triangulated subcategory satisfying the following conditions:

(1) For every X ∈ K, there exists X → Y in SN with Y ∈ J .
(2) For every Y ∈ J ∩N , FY ∈ N ′.

Then the right derived functor (RF : K/N → K′/N ′, ϵ) exists and the restriction of
ϵ to J is a natural isomorphism.

We refer to [KS2, Proposition 7.3.2] for a non-triangulated version of the propo-
sition.

Proof. By (1) and Lemma 2.5.20, the inclusion ι : J → K induces an equivalence
of triangulated categories ϕ : J /J ∩N → K/N . By (2), Fι induces a triangulated
functor F̄ : J /J ∩N → K′/N ′.

J J /J ∩N

K K/N

K′ K′/N ′

QJ

ι

F̄

ϕ

Q

F

Q′
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For each X ∈ K, we choose fX : X → YX as in (1). By Proposition 1.2.19, there
exists a quasi-inverse ψ of ϕ such that ψX = YX and QfX defines a natural iso-
morphism idK/N → ϕψ. In particular, for every morphism g : X → X ′ in K, the
square

X YX

X ′ YX′

QfX

Qg ϕψQg

QfX′

commutes. We have ψg = Q(h)Q(s)−1 for h : YX → Y ′ in K and s : Y ′ → YX′ in
SJ

J ∩N . By the commutativity of the above square, there exists t : Y ′ → Y ′′ in SN
such that

(2.7.1) thfX = tsfX′g.

By (1), we may assume Y ′′ ∈ J , so that t ∈ SJ
J ∩N .

We define RF = F̄ψ, which is a triangulated functor. In particular, (RF )X =
FYX . We define ϵ : Q′F → (RF )Q by ϵX = Q′FfX . By Q′F applied to (2.7.1), ϵ is a
natural transformation. For X ∈ J , fX ∈ SJ

J ∩N and ϵX is an isomorphism. Next we
prove a non-triangulated universal property for (RF, ϵ): for any functor, G : K/N →
K′/N ′, the composition c of the first column of the following commutative diagram
is a bijection:

HomFun(K/N ,K′/N ′)(RF,G) HomFun(J /J ∩N ,K′/N ′)(RFϕ,Gϕ)

HomFun(K,K′/N ′)(RGQ,GQ) HomFun(J ,K′/N ′)(RFQι,GQι)

HomFun(K,K′/N ′)(Q′F,GQ) HomFun(J ,K′/N ′)(Q′Fι,GQι)

−Q≃

−ϕ
∼

−QJ≃

−◦ϵ

−ι

−◦ϵι≃

−ι

where the vertical arrows of the upper square are bijections by Remark 2.4.2. It
follows from the commutativity of the diagram that c is an injection. To prove the
surjectivity, let η : Q′F → GQ be a natural transformation. For any X ∈ K, we
have a commutative square

FX GX

FYX GYX .

Q′FfX

ηX

GQfX

ηYX

We define α : RF → G by taking αX to be the composite FYX
ηYX−−→ GYX

G(QfX)−1

−−−−−−→
GX. Then c(α) = η.

Finally, the non-triangulated universal property implies that ϵ is a natural trans-
formation of triangulated functors and the desired triangulated universal property
holds.

The proof shows that ϵX : FX → RFX can be computed by choosing f : X → Y
in SN with Y ∈ J and taking ϵX = Q′Ff : FX → FY .
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Remark 2.7.4. One important case is K = K+(A), N = N+(A), and J = K+(I),
where I ⊆ A denotes the full subcategory spanned by injectives. Since in this case
J ∩N is equivalent to zero, the conditions of Proposition 2.7.3 are satisfied whenever
A admits enough injectives.

Another important case is K = K(A), N = N(A), and J = Khi(A). Since in
this case J ∩N is equivalent to zero, the conditions of Proposition 2.7.3 are satisfied
whenever there are enough homotopically injective complexes.

Definition 2.7.5. Let F : A → B be an additive functor between abelian categories.
By a right derived functor of F , we mean a right derived functor RF : D+(A) →
D+(B) of K+(F ) : K+(A) → K+(B) with respect to N+(A) and N+(B). If RF
exists, we put RnFK = HnRFK ∈ B for K ∈ D+(A) (sometimes called the
hypercohomology of K with respect to RF ). The functor RnF : A → B is called the
n-th right derived functor of F .

By a left derived functor of F , we mean a left derived functor ofK−(F ) : K−(A)→
K−(B) with respect toN−(A) andN−(B). If LF exists, we put LnFX = H−nLFX ∈
B for X ∈ A. The functor LnF : A → B is called the n-th left derived functor of F .

Remark 2.7.6. Consider a short exact sequence 0→ X ′ → X → X ′′ → 0 in A. If
RF exists, then we have a distinguished triangle

(2.7.2) RFX ′ → RFX → RFX ′′ → RFX ′[1],

which induces a long exact sequence

(2.7.3) · · · → RnFX ′ → RnFX → RnFX ′′ → Rn+1FX ′ → · · · .

Similarly, if LF exists, then we have a long exact sequence

· · · → LnFX
′ → LnFX

′ → LnFX → LnFX
′′ → Ln−1FX

′ → · · · .

Definition 2.7.7. Let F : A → B is an additive functor between abelian categories.
A full additive subcategory J ⊆ A is said to be F -injective if it satisfies the following
conditions:

(a) For every X ∈ A, there exists a monomorphism X → Y with Y ∈ J .
(b) For every L ∈ N+(J ), FL is acyclic.

A full additive subcategory J ⊆ A is said to be F -projective if J op ⊆ Aop is
F -injective.

Note that the conditions (a) and (b) are equivalent to the conditions of Propo-
sition 2.7.3 applied to the functor K+(F ) : K+(A) → K+(B), the subcategories
N+(A), N+(B), and the subcategory K+(J ). Indeed, (b) is the same as (2). By
Theorem 2.5.19, (a) implies (1). Conversely, for X ∈ A, by (1) there exists a quasi-
isomorphism X → L with L ∈ N+(J ). Since X → Z0L→ H0L is an isomorphism,
X → Z0L is a monomorphism. It follows that X → Z0L→ L0 is a monomorphism.

By Proposition 2.7.3, if there exists an F -injective subcategory J ⊆ A, then the
right derived functor (RF : D+(A) → D+(B), ϵ) exists and the restriction of ϵ to
K+(J ) is a natural isomorphism.
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The terminology is not completely standard. Our definition here follows [KS2,
Definitions 10.3.2, 13.3.4]. The same authors gave a more restrictive definition of
F -injective categories in their previous book [KS1, Definition 1.8.2] ((a), (b′) below,
and J stable under isomorphisms in A).

Proposition 2.7.8. Condition (b′) below implies (b).
(b′) Every monomorphism X ′ → X in A with X ′, X ∈ J can be completed into a

short exact sequence
0→ X ′ → X → X ′′ → 0

in A with X ′′ ∈ J such that the sequence

0→ FX ′ → FX → FX ′′ → 0

is exact.

Proof. Let L ∈ K+(J ) be an acyclic complex. Then L breaks into short exact
sequences

0→ ZnL→ Ln → Zn+1L→ 0.
By (b′), one shows by induction on n that ZnL is isomorphic to an object in J and
we have short exact sequences

0→ F (ZnL)→ F (Ln)→ F (Zn+1L)→ 0,

so that K+(F )(L) is acyclic.

Remark 2.7.9. If A admits enough injectives, then the full subcategory I ⊆ A
consisting of injective objects satisfies conditions (a) and (b′) for every F .

Proposition 2.7.10. Let F : A → B be an additive functor between abelian cat-
egories and let J ⊆ A be an F -injective subcategory. The functor RF carries
D≥n(A) into D≥n(B). In particular, R0F is left exact and RnFX = 0 for X ∈ A
and n < 0. Moreover, F is left exact if and only if the morphism FX → R0FX is
an isomorphism for all X ∈ A.

Proof. The first assertion is that RFK ∈ D≥n(B) for K ∈ D≤n(A). For this, up
to replacing K by τ≥nK, we may assume K ∈ K≥n(B). By Theorem 2.5.19 (1),
there exists a quasi-isomorphism K → K ′ with K ′ ∈ K≥n(J ). By Proposition 2.7.3,
RFK ≃ FK ′ ∈ D≥n(B). The second assertion follows from the first one and the
long exact sequence (2.7.3). For the third assertion, the “if” part is then trivial.
Finally, assume that F is left exact and let X ∈ A. Choose a quasi-isomorphism
X → L with L ∈ K≥0(J ), corresponding to an exact sequence

0→ X → L0 → L1 → · · · .

Applying F , we obtain an exact sequence

0→ FX → FL0 → FL1.

Thus R0FX ≃ H0FL ≃ FX.
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Remark 2.7.11. If J satisfies (a) and (b′) for F , then the same holds for R0F .
Indeed, the second part of condition (b′) for R0F follows from the long exact se-
quence (2.7.3) and RFX ≃ FX for X ∈ J . Moreover, the natural transformation
F → R0F induces a natural isomorphism RF

∼−→ R(R0F ).

Proposition 2.7.12. Let F : A → B be a left exact functor between abelian cate-
gories admitting an F -injective subcategory J ⊆ A. Then the full subcategory I of
A spanned by objects X such that RnFX = 0 for all n ≥ 1 satisfies (a) and (b′) for
F . In particular, I is F -injective. Moreover, for any short exact sequence

0→ X ′ → X → X ′′ → 0

in A, the following holds
(1) If X ′ ∈ I, then the induced sequence 0→ FX ′ → FX → FX ′′ → 0 is exact.
(2) If X ′, X ∈ I, then X ′′ ∈ I.
(3) If X ′, X ′′ ∈ I, then X ∈ I.

Clearly I is the largest F -injective subcategory of A. Objects of I are sometimes
said to be F -acyclic.

Proof. It is clear that J ⊆ I. Condition (a) for I then follows from condition (a)
for J . (1), (2), (3) follow easily from the long exact sequence for (2.7.2). (b) follows
from (1) and (2).

Proposition 2.7.13. Let F : A → B, G : B → C be additive functors between
abelian categories. Let I ⊆ A be an F -injective subcategory and let J ⊆ B be a
G-injective subcategory. Assume that F carries I into J . Then I is a GF -injective
subcategory and the natural transformation η : R(GF ) → (RG)(RF ) given by the
universal property of right derived functors is a natural isomorphism.

This applies in particular to the case where I ⊆ A and J ⊆ B are the full sub-
categories spanned by injectives if A and B admit enough injectives and F preserves
injectives.

Proof. It is clear that I is GF -injective. For the second assertion, let ϵ, ϵ′, ϵ′′ be the
natural transformations underlying RF , RG, R(GF ). Then we have a commutative
diagram

GFL R(GF )L

(RG)(RF )L

ϵ′′

ϵ′ϵ
η

For L ∈ K+(I), the horizontal and oblique arrows are isomorphisms. Hence so is
ηL.

We leave it to the reader to give dual statements of the above.

Example 2.7.14. Let G be a group. By a (left) G-module, we mean an abelian
group equipped with a (left) G-action, or equivalently, a (left) ZG-module, where
ZG = Z[G] is the group ring. The functor Ab → ZG-Mod carrying an abelian



2.7. DERIVED FUNCTORS 101

groupA toA equipped with trivialG-action admits a right adjoint (−)G : ZG-Mod→
Ab and a left adjoint (−)G : ZG-Mod → Ab, which can be described as follows.
For a G-module M , MG is the maximal G-invariant subgroup of M , which is the
group of G-invariants of M . Since ZG-Mod admits enough injectives and enough
projectives, these functors admit left and right derived functors. Moreover, MG is
the maximal G-invariant quotient group of M , called the group of G-coinvariants of
M . We define Hn(G,−) to be the n-th right derived functor of (−)G, and Hn(G,−)
to be the n-th left derived functor of (−)G. For a G-module M , we call Hn(G,M) the
n-th cohomology group of G with coefficients in M , and Hn(G,M) the n-th homology
group of G with coefficients in M . Thus H0(G,M) = MG and H0(G,M) = MG.
For a short exact sequence 0 → M ′ → M → M ′′ → 0 of G-modules, we have long
exact sequences

0→M ′G →MG →M ′′G → H1(G,M ′)→ · · · ,
· · · → H1(G,M ′′)→M ′

G →MG →M ′′
G → 0.

Hn(G,M) can be computed as the n-th cohomology of IG, where M → I is an
injective resolution. Dually, Hn(G,M) can be computed as the −n-th cohomology
of PG, where P → M is a projective resolution. We will give better recipes for the
computation later.

Example 2.7.15. Let A be an abelian category and let B = A•→• be the category
of morphisms in A. The functor ker : B → A is left exact. The full subcategory J
of B spanned by epimorphisms in A satisfies (a) and (b′) for ker. On B, we have
R1 ker ≃ coker and Rn ker = 0 for n > 1. The long exact sequence associated to a
short exact sequence in B recovers the snake lemma. More generally, for K ∈ C(B),
corresponding to a morphism f in C(A), we have R kerK ≃ Cone(f)[−1].

Dually, coker : B → A is right exact. On B, L1 coker ≃ ker and Ln coker = 0 for
n > 1. More generally, for K ∈ C(B), corresponding to a morphism f in C(A), we
have L cokerK ≃ Cone(f). (Exercise. See also Remark 2.7.18.)

Example 2.7.16. Let X be a topological space. The global section functor

Γ(X,−) : Shv(X)→ Ab

is left exact. Since Shv(X) admits enough injectives, Γ(X,−) admits a right de-
rived functor RΓ(X,−) : D+(Shv(X))→ D+(Ab). We write Hn(X,−) for the n-th
right derived functor of RΓ(X,−). For F ∈ Shv(X), Hn(X,F) is called the n-th
cohomology group of X with coefficients in F . We have H0(X,F) = Γ(X,F). By
extension, for K ∈ D+(Shv(X)), we write Hn(X,K) for HnRΓ(X,K), which is
sometimes called the n-th hypercohomology of X with coefficients in K. A sheaf F
on X is called flabby (flasque in French) if the restriction map F(V ) → F(U) is
surjective for every inclusion U ⊆ V of open subsets of X. Any sheaf can be canon-
ically embedded into a flabby sheaf: F ↪→ ∏

x∈X ix∗i
∗
xF . Using Zorn’s lemma, one

can show that the full subcategory of Shv(X) spanned by flabby sheaves satisfies
(a) and (b′) for Γ(X,−).

The functor Γ(X,−) admits an exact left adjoint, carrying an abelian group M
to the constant sheaf MX on X of value M . The sheaf MX is the sheafification of
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the constant presheaf U 7→ M . For X locally contractible, we have Hn(X,MX) ≃
Hn

sing(X,M), where Hn
sing(X,M) is the cohomology of the singular cochain complex

C•(X,M). To see this, consider the sequence

0→MX → C0(X,M)→ · · · → Cn(X,M)→ · · · ,

where Cn(X,M) is the sheafification of U 7→ Cn(U,M). The sequence is exact.
Indeed, the cohomology of the sequence at Cn(X,M) is the sheafification of U 7→
H̃n

sing(U,M), which is zero by local contractibility. Moreover, Cn(X,M) is flabby.
Thus, Hn(X,M) ≃ Hn(Γ(X, C•(X,M))). A subdivision argument shows that the
morphism of complexes C•(X,M) → Γ(X, C•(X,M)), surjective in each degree, is
a quasi-isomorphism.

Example 2.7.17. Let f : X → Y be a continuous map of topological spaces. The
left exact functor f∗ : Shv(X)→ Shv(Y ) defined by (f∗F)(V ) = F(f−1(V )) admits
an exact left adjoint f ∗ : Shv(Y )→ Shv(X) defined by (f ∗G)(U) = colimf(U)⊆V G(V ),
where the colimit runs through the filtered category (U ↓ f−1)op. Thus f ∗ extends
to a functor

f ∗ : D(Shv(Y ))→ D(Shv(X)).
Moreover f∗ admits a right derived functor Rf∗ : D+(Shv(X))→ D+(Shv(Y )). The
full subcategory of Shv(X) spanned by flabby sheaves satisfies (a) and (b′) for f∗.
In the special case where Y is a point, f∗ = Γ(X,−).

For a sequence of continuous maps X f−→ Y
g−→ Z, we have natural isomorphisms

f ∗g∗ ≃ (gf)∗ and R(gf)∗ ≃ Rg∗Rf∗.

Remark 2.7.18. We have already seen one important case (second part of Remark
2.7.4) where derived functors exist between unbounded derived categories. There
are other such cases. We refer to [KS2, Chapters 14] for details.

2.8 Derived Hom
The goal of this section and the following is to study derive functors of the Hom and
tensor functors. Since these functors have two variables, we need some generalities
on double complexes.

Double complexes
Let A be an additive category.

Definition 2.8.1. We define the category of double complexes in A to be C2(A) =
C(C(A)). Thus a double complex consists of objects X i,j for i, j ∈ Z and differen-
tials dI : X i,j → X i+1,j, dII : X i,j → X i,j+1 such that di+1,j

I di,jI = 0, di,j+1
II di,jII = 0,

di,j+1
I di,jII = di+1,j

II di,jI .

Definition 2.8.2. Let X be a double complex in A. We define two complexes in A
with (tot⊕X)n = ⊕i+j=nX i,j (if the coproducts exist) and (totΠX)n = ∏

i+j=nX
i,j

(if the products exist), called total complex of X with respect to coproducts and
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products, respectively. The differentials are defined as follows. Let i + j = n. The
composition X i,j → (tot⊕X)n dn

−→ (tot⊕X)n+1 is given by

(2.8.1) di,jI + (−1)idi,jII .

The composition (totΠX)n−1 dn−1
−−−→ (totΠX)n → X i,j is given by

(2.8.2) di−1,j
I + (−1)idi,j−1

II .

Remark 2.8.3. The sign in (2.8.1) and (2.8.2) ensures that d2 = 0. If Y is the
transpose of X defined by Y i,j = Xj,i and by swapping the two differentials, then
we have an isomorphism tot⊕X ≃ tot⊕Y given by (−1)ijidXi,j . The same holds for
totΠ.

In the literature, a variant of Definition 2.8.1 with dIdII +dIIdI = 0 is sometimes
used. If we adopt this variant, then (2.8.1) can be simplified to d = dI + dII . The
two definitions correspond to each other by multiplying di,jII by the sign (−1)i.

Definition 2.8.4. We say that a double complex X is biregular if for every n,
X i,j = 0 for all but finitely many pairs (i, j) with i+j = n. We let C2

reg(A) ⊆ C2(A)
denote full subcategory consisting of biregular double complexes. It is an additive
subcategory.

If X i,j = 0 for i < a or j < b (X concentrated in a (translated) first quadrant) or
X i,j = 0 for i > a or j > b (X concentrated in a (translated) third quadrant), then
X is biregular. If X i,j = 0 for |i| ≫ 0 (concentrated in a vertical stripe) or X i,j = 0
for |j| ≫ 0 (concentrated in a horizontal stripe), then X is biregular.

Remark 2.8.5. If X is a biregular double complex, then tot⊕X and totΠX exist
and we have tot⊕X

∼−→ totΠX. We will simply write tot(X). We get an additive
functor tot : C2

reg(A)→ C(A).

Example 2.8.6. Let f : L → M be a morphism of complexes in A. We define a
double complex X by X−1,j = Lj, X0,j = M j, X i,j = 0 for i ̸= −1, 0, d−1,j

I = f j, dII
given by dL and dM . Then tot(X) = Cone(f).

Let A, A′, A′′ be additive categories. Let F : A × A′ → A′′ be a functor that
is additive in each variable. Then F extends to a functor C2(F ) : C(A)× C(A′)→
C2(A′′) additive in each variable. For X ∈ C(A), Y ∈ C(A′), the double complex
C2(F )(X, Y ) is defined by C2(F )(X, Y )i,j = F (X i, Y j), with di,jI = F (diX , idY j ),
di,jII = F (idXi , djY ).

Example 2.8.7. Let R be a ring. The functor −⊗R − : Mod-R× R-Mod→ Ab
is additive in each variable. Thus it extends to

−⊗R − : C(Mod-R)× C(R-Mod)→ C2(Ab).

Example 2.8.8. Let A be an additive category with small Hom sets. The functor
HomA : Aop × A → Ab is additive in each variable. We have an isomorphism
C(A)op ≃ C(Aop), carrying (X, d) to ((X−n), (−1)nd−n−1). Thus HomA extends to
a functor

Hom••
A : C(A)op × C(A)→ C2(Ab),
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additive in each variable. For X, Y ∈ C(A), Hom••
A (X, Y )i,j = HomA(X−j, Y i),

with
di,jI = HomA(X−j, diY ), di,jII = HomA((−1)jd−j−1

X , Y i).

We define Hom•
A as the composite functor

C(A)op × C(A) Hom••
A−−−−→ C2(Ab) totΠ−−→ C(Ab).

We have
Hom•

A(X, Y )n =
∏
j∈Z

HomA(Xj, Y n+j),

and for f = (f j) ∈ Hom•
A(X, Y )n,

(dnf)j = dj+nY f j + (−1)n+1f j+1djX .

Proposition 2.8.9. We have

Z0Hom•
A(X, Y ) ≃ HomC(A)(X, Y ),

B0Hom•
A(X, Y ) ≃ im(Ht(X, Y )→ HomC(A)(X, Y )),

H0Hom•
A(X, Y ) ≃ HomK(A)(X, Y ).

Proof. We have d0(f) = df − fd, so that d0(f) = 0 if and only if f : X → Y is a
morphism of complexes. We have Ht(X, Y ) = Hom•

A(X, Y )−1, and for h ∈ Ht(X, Y ),
d−1(h) = dh+ hd.

Definition 2.8.10. Let D, D′, D′′ be triangulated categories. A triangulated bifunc-
tor is a functor F : D×D′ → D′′ equipped with natural isomorphisms F (X[1], Y ) ≃
F (X, Y )[1], F (X, Y [1]) ≃ F (X, Y )[1], such that the following diagram anticom-
mutes

F (X[1], Y [1]) //

��

F (X, Y [1])[1]

��
F (X[1], Y )[1] // F (X, Y )[2]

and such that F is triangulated in each variable.
A natural transformation of triangulated bifunctors F → F ′ is a natural trans-

formation α : F → F ′ such that for all X an Y ,

αX,− : F (X,−)→ F ′(X,−), α−,Y : F (−, Y )→ F ′(−, Y )

are natural transformations of triangulated functor.
Triangulated bifunctors D ×D′ → D′′ form a category TrBiFun(D,D′;D′′).

Note that Hom• factorizes through a triangulated bifunctor

K(A)op ×K(A)→ K(Ab).
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Derived Hom
Definition 2.8.11. Let F : K×K′ → K′′ be a triangulated bifunctor and letN ⊆ K,
N ⊆ K′, N ′′ ⊆ K′′ be full triangulated subcategories. Let Q : K → K/N , Q′ : K′ →
K′/N ′, and Q′′ : K′′ → K′′/N ′′ be the localization functors. A right derived bifunctor
of F with respect to N , N ′, and N ′ is an initial object of (Q′′F ↓ −(Q×Q′)), where
−(Q×Q′) : TrBiFun(K/N ,K′/N ′;K′′/N ′′)→ TrBiFun(K,K′;K′′/N ′′) is the functor
induced by composition with Q×Q′. In other words, a right derived bifunctor is a
pair (RF, ϵ), where RF : K/N × K′/N ′ → K′′/N ′′ is a triangulated bifunctor and
ϵ : Q′′F → (RF )(Q × Q′) is a natural transformation of triangulated bifunctors, as
shown in the diagram

K ×K′ K/N ×K′/N ′

K′′ K′′/N ′′,

Q×Q′

F ϵ⇒ RF

Q′′

such that for every pair (G, η), where G : K/N ×K′/N ′ → K′′/N ′′ is a triangulated
bifunctor and η : Q′′F → G(Q × Q′) is a natural transformation of triangulated
bifunctors, there exists a unique natural transformation of triangulated bifunctors
α : RF → G such that η = (α(Q×Q′))ϵ.

Dually, a left derived functor of F with respect to N , N ′, and N ′′ is a final
object of (−(Q×Q′) ↓ Q′′F ).

Right (resp. left) derived bifunctors of F with respect to N , N ′, and N ′ are
unique up to unique natural isomorphism.

Remark 2.8.12. The above definition only depends on the category K′′ via its
localization K′′/N ′′.

Proposition 2.8.13. Let F : K × K′ → K′′ be a triangulated bifunctor and let
N ⊆ K, N ′ ⊆ K′′, N ′ ⊆ K′′ be full triangulated subcategories such that Ob(N )
stable under isomorphisms. Let J ⊆ K be a full triangulated subcategory satisfying
the following conditions:

(1) For every X ∈ K, there exists X → Y in SN with Y ∈ J .
(2) For Y ∈ J ∩N and X ′ ∈ K′, we have F (Y,X ′) ∈ N ′′.
(3) For Y ∈ J and X ′ ∈ N ′, we have F (Y,X ′) ∈ N ′′.

Then the right derived bifunctor (RF : K/N × K′/N ′ → K′′/N ′′, ϵ) exists and the
restriction of ϵ to J ×K′ is a natural isomorphism.

Under the assumptions of the proposition, for everyX ′ ∈ K′, RF (−, X ′) : K/N →
K′′/N ′′ is a right derived functor of F (−, X ′) : K → K′′.

Proof. The proof is very similar to the proof of Proposition 2.7.3. By (1) and Lemma
2.5.20, the inclusion ι : J → K induces an equivalence of triangulated categories
ϕ : J /J ∩N → K/N . By (2) and (3), F (ι× idK′) induces a triangulated bifunctor
F̄ : J /J ∩ N ×K′/N ′ → K′′/N ′′. We define RF = F̄ψ, where ψ is a quasi-inverse
of ϕ.
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Let A be an abelian category with small Hom sets.
Proposition 2.8.14. Assume that A admits enough injectives. Then the triangu-
lated bifunctor

Hom•
A : K(A)op ×K+(A)→ K(Ab)

admits a right derived bifunctor

RHomA : D(A)op ×D+(A)→ D(Ab)

such that, for M ∈ K+(A) with injective components and L ∈ K(A), we have

Hom•
A(L,M) ∼−→ RHomA(L,M).

Proof. We denote by I ⊆ A the full subcategory spanned by injective objects. We
apply Proposition 2.8.13 to

K = K+(A), K′ = K(A)op, K′′ = K(Ab), J = K+(I),

andN ⊆ K, N ′ ⊆ K′, N ′′ ⊆ K′′ the full subcategories spanned by acyclic complexes.
Let us check the three assumptions.

(1) This follows from Theorem 2.5.19.
(2) We need to show that for L ∈ K(A), M ∈ K+(I) acyclic, Hom•

A(L,M) is
acyclic. By Proposition 2.5.23, M = 0 in K(A). Thus

HnHom•
A(L,M) ≃ HomK(A)(L,M [n]) = 0.

(3) We need to show that for L ∈ K(A) acyclic, M ∈ K+(I), Hom•
A(L,M) is

acyclic. By Proposition 2.5.28, we have

HnHom•
A(L,M) ≃ HomK(A)(L,M [n]) = 0.

Remark 2.8.15. Assume that A has enough injectives. For L ∈ D(A), M ∈
D+(A), we have

HnRHomA(L,M) ≃ HnHom•
A(L,M ′) ≃ HomK(A)(L,M ′[n])

≃ HomD(A)(L,M ′[n]) ≃ Extn(L,M),

where we have taken a quasi-isomorphism M → M ′ ∈ K+(A) such that M ′ has
injective components, and in the third isomorphism we used the fact that M ′ is
homotopically injective (Proposition 2.5.28). In particular, for X ∈ A, Extn(X,−)
is the n-th right derived functor of Hom(X,−).
Remark 2.8.16. If there are enough homotopically injective complexes, then the
triangulated bifunctor

Hom•
A : K(A)op ×K(A)→ K(Ab)

admits a right derived bifunctor

RHomA : D(A)op ×D(A)→ D(Ab)

such that, for M ∈ Khi(A) and L ∈ K(A), we have

Hom•
A(L,M) ∼−→ RHomA(L,M).
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Dually, we have the following.
Proposition 2.8.17. Assume that A admits enough projectives. Then the triangu-
lated bifunctor

Hom•
A : K−(A)op ×K(A)→ K(Ab).

admits a right derived bifunctor

RHomA : D−(A)op ×D(A)→ D(Ab)

such that for L ∈ K−(A) with projective components and M ∈ K(A), we have

Hom•
A(L,M) ∼−→ RHomA(L,M).

Remark 2.8.18. In the case where A admits enough injectives and enough projec-
tives, the functors RHom defined in Propositions 2.8.14 and 2.8.17 are isomorphic
when restricted to D−(A)×D+(A), by the universal property of right derived func-
tors. Here is another proof. For L ∈ D−(A) and M ∈ D+(A), RHom(L,M)
can be computed by finding quasi-isomorphisms L′ → L and M → M ′ such that
L′ ∈ C−(A) has projective components and M ′ ∈ C+(A) has injective components
and taking Hom•(L′,M ′).
Remark 2.8.19. (1) If A admits enough injectives or enough projectives, then

RHomA(−,−) carries (D≤m(A))op ×D≥n(A) to D≥n−m(Ab).
(2) If A admits enough projectives, then an object X of A satisfies proj.dim(X) ≤

d if and only if RHomA(X,−) carries D≤0(A) to D≤d(Ab).
(3) If A admits enough injectives, then an object Y of A satisfies inj.dim(Y ) ≤ d

if and only if RHomA(−, Y ) carries D≥0(A) to D≤d(Ab).
Remark 2.8.20. Assume that A admits enough injectives. We have an isomor-
phism RHomA(L,M) ≃ RHomAop(M,L), natural in L ∈ D(A) and M ∈ D+(A).
Here on the right hand side we regard L ∈ D(Aop) and M ∈ D−(Aop).
Proposition 2.8.21. Let A and B be abelian categories admitting enough injectives
and let F : B → A be an exact functor admitting a right adjoint G : A → B. Then
for X ∈ D(B) and Y ∈ D+(A), we have

RHomD(A)(FX, Y ) ≃ RHomD(B)(X,RGY ),
HomD(A)(FX, Y ) ≃ HomD(B)(X,RGY ).

In particular, RG : D+(A)→ D+(B) is a right adjoint of the functor F : D+(B)→
D+(A).

Proof. We may replace Y by a complex in K+(A) with injective components. Then
RGY is computed by GY . Since F is exact, G preserves injectives, so that GY is
in K+(B) with injective components. The first isomorphism is given by

Hom••
A (FX, Y ) ≃ Hom••

B (X,GY ), Hom•
A(FX, Y ) ≃ Hom•

B(X,GY ).

Applying H0, we get the second isomorphism.
Example 2.8.22. Let f : X → Y be a continuous map. The functor

Rf∗ : D+(Shv(X))→ D+(Shv(Y ))

is a right adjoint of the functor f ∗ : D+(Shv(Y ))→ D+(Shv(X)).
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Examples
Let A = R-Mod, where R is a ring.

Example 2.8.23. Let R be a ring. Let r ∈ R be an element that is not a right
zero-divisor. In other words, R ×r−→ R is an injection. Then the R-module R/Rr has
the following projective resolution: 0→ R

×r−→ R → R/Rr → 0. For any R-module
M , RHomR(R/Rr,M) is computed by the complex M r×−→M put in degrees 0 and
1.

If R is a PID and s ∈ R is nonzero, then

Ext0
R(R/rR,R/sR) ≃ s

(r, s)R/sR ≃ R/(r, s)R ≃ Ext1
R(R/rR,R/sR)

and, by Proposition 2.6.29, we haveRHom(R/rR,R/sR) ≃ R/(r, s)R⊕(R/(r, s)R)[−1].
Here (r, s) denotes a greatest common divisor of r and s, namely (r, s)R = rR+ sR.

Example 2.8.24. Let R = Z. Then Z has the following injective resolution:
0 → Z → Q → Q/Z → 0. Thus RHomZ(Q/Z,Z) is computed by the complex
HomZ(Q/Z,Q)→ HomZ(Q/Z,Q/Z) put in degrees 0 and 1. We have

HomZ(Q/Z,Q) = 0,

HomZ(Q/Z,Q/Z) ≃ HomZ(colim
n∈N×

1
n
Z/Z,Q/Z) ≃ lim

n∈(N×)op
HomZ( 1

n
Z/Z,Q/Z)

≃ lim
n∈(N×)op

Z/nZ =: Ẑ.

Here N× is the set of positive integers, ordered by divisibility, the third isomorphism
is induced by the pairing

Z/nZ× 1
n
Z/Z→ Q/Z

sending (a mod n, b mod 1) to ab mod 1, the transition map 1
m
Z/Z → 1

n
Z/Z for

m | n is the inclusion, and the transition map Z/nZ → Z/mZ for m | n sends
a mod n to a mod m. Ẑ is called the profinite completion of Z. In summary,
RHomZ(Q/Z,Z) ≃ Ẑ[−1].

Example 2.8.25. Let A be a ring and let R = A[x, y]. Consider the bilateral ideal
m = Rx+Ry. The quotient R/m admits a free resolution

0→ R
(y,−x)−−−→ R2 (x,y)−−→ R→ R/m→ 0.

Thus RHomR(R/m, R) is computed by the complex R (x,y)−−→ R2 (y,−x)−−−→ R in degrees
0, 1, 2. Therefore, RHomR(R/m, R) ≃ R/m[−2]. In the commutative case, the free
resolution above is a special case of the Koszul complex. See the next heading.

Now consider m2 = Rx2+Rxy+Ry2. The quotient R/m2 admits a free resolution

0→ R2

(
y 0

−x y
0 −x

)
−−−−−−→ R3 (x2,xy,y2)−−−−−→ R→ R/m2 → 0.
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Thus RHomR(R/m2, R/m) is computed by the complex

A
0−→ A3 0−→ A2

in degrees 0, 1, 2.
Example 2.8.26. Let A be a ring and R = A[t]/(tn). For a ≤ n, the R-module
R/Rta admits a free resolution

(2.8.3) · · · → R
ta−→ R

tn−a

−−→ R
ta−→ R→ R/taR→ 0.

Thus, for b ≤ n, RHomR(R/Rta, R/Rtb) is computed by the complex

· · · → 0→ R/Rtb
ta−→ R/Rtb

tn−a

−−→ R/Rtb
ta−→ R/Rtb → · · ·

in degrees ≥ 0. For i ≥ 0 even,

ker(di) = Rtmax(b−a,0)/Rtb, im(di) = Rtmin(a,b)/Rtb.

For i ≥ 1 odd,

ker(di) = Rtmax(a+b−n,0)/Rtb, im(di) = Rtmin(n−a,b)/Rtb.

Thus

ExtiR(R/Rta, R/Rtb) ≃


R/Rtmin(a,b) i = 0
R/Rtmin(a,b)−max(a+b−n,0) i ≥ 1
0 i < 0.

In particular, for A nonzero and 0 < a < n, proj.dimR(R/Rta) = inj.dimR(R/Rta) =
∞.

That all Exti, i ≥ 1 are isomorphic has the following explanation, at least when
A = k is a field. If L is a complex in an abelian category with Li of finite length,
then

lg(HnL) = lg(ZnL)− lg(BnL) = lg(Ln)− lg(BnL)− lg(Bn+1L).
Example 2.8.27. Let A be a ring and R = A[x, y]/(xy). The R-module R/Rx
admits a free resolution

(2.8.4) · · · → R
x−→ R

y−→ R
x−→ R→ R/Rx→ 0.

Thus RHomR(R/Rx,R/Ry) is computed by the complex

· · · → 0→ R/Ry
x−→ R/Ry

0−→ R/Ry
x−→ · · ·

in degrees ≥ 0 and RHomR(R/Rx,R/Ry) ≃ ⊕∞
i=0 R/m[−(1 + 2i)], where m =

Rx+Ry.
Note that m = Rx ⊕ Ry ≃ R/Ry ⊕ R/Rx. Thus the R-module R/m admits a

free resolution

· · · → R2

(
y 0
0 x

)
−−−−→ R2

(
x 0
0 y

)
−−−−→ R2

(
y 0
0 x

)
−−−−→ R2 (x,y)−−→ R→ R/m→ 0.

It follows that RHomR(R/m, R/m) is computed by the complex

· · · → 0→ R/m
0−→ (R/m)2 0−→ (R/m)2 0−→ (R/m)2 → · · ·

in degrees ≥ 0.
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The resolutions (2.8.3) and (2.8.4) admit the following partial generalization.
Let A be a unique factorization domain and R = A/(xy), where x, y are nonzero
elements of A. Then the R-module R/Rx admits a free resolution

· · · → R
x−→ R

y−→ R
x−→ R→ R/Rx→ 0.

Koszul complexes
Let R be a commutative ring, E an R-module, and ϕ : E → R an R-module homo-
morphism. The Koszul complex K(ϕ) associated to ϕ is the complex in C≤0(R-Mod)
defined by K(ϕ)−n = ∧n

RE with differentials given by

d−n(e1 ∧ · · · ∧ en) =
n∑
i=1

(−1)i−1ϕ(ei)e1 ∧ · · · ∧ êi ∧ · · · ∧ en.

Here e1, . . . , en ∈ E. The differentials are well defined, because the right-hand side
of the above formula is zero whenever ei = ej for some i < j. The complex has the
form

· · · →
2∧
R

E
d−2
−−→ E

ϕ−→ R→ 0 · · · .

We are mostly interested in the case where E = Rr is a free module of finite
rank. In this case, ϕ : Rr → R is given by f1, . . . , fr ∈ R and we denote K(ϕ) by
K(f1, . . . , fr) or K(R, f1, . . . , fr). Up to isomorphism, this does not depend on the
order of f1, . . . , fr. We have K(f1, . . . , fr)−n = ∧n

RR
r ≃ R(r

n) and K(f1, . . . , fr) ∈
C [−r,0](R-Mod).

Example 2.8.28. In the case r = 1, for f ∈ R, K(f) is the complex R ×f−→ R put
in degrees −1 and 0.

Lemma 2.8.29. Let E be an R-module and ϕ : E → R an R-module homomor-
phism. Let E ′ = E ⊕ R and ϕ′ = (ϕ, f) : E ′ → R, where f ∈ R. Then K(ϕ′) ≃
Cone(K(ϕ) ×f−→ K(ϕ)). In other words, K(ϕ′) ≃ tot(K(ϕ)⊗R K(f)).

Proof. Let C denote the cone and let e0 = (0, 1) ∈ E ′. By definition, we have

C−n = K(ϕ)−n+1 ⊕K(ϕ)−n =
n−1∧

E ⊕
n∧
E

α−n

−−→
∼

n∧
E ′ = K(ϕ′)−n,

where α−n(e1 ∧ · · · ∧ en−1, 0) = e0 ∧ e1 ∧ · · · ∧ en−1 and α−n|∧nE is induced by
the inclusion E ↪→ E ′. It remains to check that the isomorphism commutes with
differentials, namely α−n+1d−n

C = d−n
K(ϕ′)α

−n. This is clear on ∧nE. Moreover,

α−n+1(d−n
C (e1 ∧ . . . en−1, 0)) = α−n+1(−dK(ϕ)−n+1(e1 ∧ . . . en−1), fe1 ∧ . . . en−1)

= fe1 ∧ . . . en−1 −
n∑
i=1

ϕ(ei)e0 ∧ · · · ∧ êi ∧ en−1

= dK(ϕ′)(e0 ∧ e1 ∧ · · · ∧ en−1) = dK(ϕ′)(α−n(e1 ∧ . . . en−1, 0)).
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Remark 2.8.30. By induction, K(f1, . . . , fr) is obtained from K(f1) by successively
tensoring with K(f2), . . . , K(fr) and taking tot after each tensoring. In fact, we have

K(f1, . . . , Kr) ≃ tot(K(f1)⊗R · · · ⊗R K(fr)),

where tot denotes the totalization of m-uple complexes. We leave it to the reader
to work out the sign rule.

Definition 2.8.31. Let R be a ring and let M be an R-module. A sequence of
central elements f1, . . . , fr of R is called an M-regular sequence if M/(f1, . . . , fr)M
is not zero and the map M/(f1, . . . , fi−1)M

fi×−−→ M/(f1, . . . , fi−1)M is an injection
for each i = 1, . . . , r. An R-regular sequence is called a regular sequence.

Proposition 2.8.32. Let R be a commutative ring, M an R-module, and f1, . . . , fr
an M-regular sequence in R. Then H i(K(f1, . . . , fr) ⊗R M) = 0 for i < 0 and
K(f1, . . . , fr)⊗RM is a left resolution of M/(f1, . . . , fr)M .

Proof. We proceed by induction. The case r = 0 is trivial. Assume thatK(f1, . . . , fr−1)⊗R
M is a resolution of M/(f1, . . . , fr−1)M . By Lemma 2.8.29, K(f1, . . . , fr) is isomor-
phic to the cone of K(f1, . . . , fr−1)⊗RM

fr×−−→ K(f1, . . . , fr−1)⊗RM . Moreover, by
M -regularity, we have a short exact sequence

0→M/(f1, . . . , fr−1)M →M/(f1, . . . , fr−1)M →M/(f1, . . . , fr)M → 0.

Thus we have a morphism of distinguished triangles in D(R-Mod)

K(f1, . . . , fr−1) ⊗R M K(f1, . . . , fr−1) ⊗R M K(f1, . . . , fr) ⊗R M K(f1, . . . , fr−1) ⊗R M [1]

M/(f1, . . . , fr−1)M M/(f1, . . . , fr−1)M M/(f1, . . . , fr)M M/(f1, . . . , fr−1)M [1]

fr× +1

fr× +1

where the dashed arrow is an isomorphism in D(R-Mod).

Remark 2.8.33. The converse of Proposition 2.8.32 holds under the additional
assumptions that R is a commutative Noetherian local ring, f1, . . . , fr belong to
the maximal ideal of R, and M ̸= 0 is a finitely generated R-module. Under these
assumptions, H−1(K(f1, . . . , fr) ⊗R M) = 0 implies that f1, . . . , fr is M -regular.
See [M1, Theorem 16.5]. Thus, under these assumptions, any permutation of an
M -regular sequence is M -regular.

Warning 2.8.34. In general a permutation of an M -regular sequence is not nec-
essarily M -regular. For example, for k a field and R = k[x, y, z], the sequence
xy, x − 1, xz is regular but xy, xz, x − 1 is not, because the image of xz in R/(xy)
is a zero-divisor.

Corollary 2.8.35. Let R be a commutative ring and I an ideal generated by a regular
sequence f1, . . . , fr in R. Let N be an R/I-module. Then we have RHomR(R/I,N) ≃⊕r

n=0 N
(r

n)[−n]. Moreover, proj.dimR(R/I) = r.



112 CHAPTER 2. DERIVED CATEGORIES AND DERIVED FUNCTORS

Proof. By Proposition 2.8.32, RHomR(R/I,N) ≃ Hom•
R(K(f1, . . . , fr), N). We

have Hom•
R(K(f1, . . . , fr), N)n = HomR(∧nEr, N) ≃ N(r

n) and the differentials are
zero.

By Proposition 2.8.32, proj.dimR(R/I) ≤ r. Taking N = R/I (or any other
nonzero N), we get proj.dimR(R/I) = r.

The above result on projective dimension extends to the noncommutative case.
See Corollary 2.9.31.

Remark 2.8.36. Let R be a commutative ring, E a free R-module of rank r, and
ϕ : E → R an R-module homomorphism. We have the following form of Poincaré
duality. Choose an isomorphism

∫
: ∧r E ∼−→ R. Then we have an isomorphism of

complexes
K(ϕ)[−r] ≃ Hom•

R(K(ϕ), R)
sending a ∈ K(ϕ)[−r]n = ∧r−nE to the element of Hom•

R(K(ϕ), R)n = HomR(∧nE,R)
given by b 7→ (−1)n

∫
(a ∧ b). To check that this is a morphism of complexes, note

that for c ∈ ∧n+1 E, we have 0 = d(a ∧ c) = da ∧ c+ (−1)r−na ∧ dc.
More generally, for any R-module M , we have an isomorphism of complexes

K(ϕ)⊗RM [−r] ≃ Hom•
R(K(ϕ),M).

In degree n, this is the isomorphism
r−n∧

E ⊗RM ≃ HomR(
n∧
E,R)⊗RM ≃ HomR(

n∧
E,M).

2.9 Derived tensor product

Double complexes and acyclicity
Let A be an abelian category. For a double complex X in A, we put

HI(X)i,j = ker(di,jI )/im(di−1,j
I ), HII (X)i,j = ker(di,jII )/im(di,j−1

II ).

The full additive subcategory C2
reg(A) ⊆ C2(A) is stable under subobjects and

quotients. Thus C2
reg(A) is an abelian category and the inclusion functor is exact.

The functor tot : C2
reg(A)→ C(A) is exact.

Proposition 2.9.1. Let X be a biregular double complex such that H i,•
I (X) is acyclic

for every i. Then tot(X) is acyclic.

A similar statement holds for HII , which generalizes the fact that the cone of a
quasi-isomorphism is acyclic.

Proof. For each m, there exists N such that Hm(tot(X)) = Hmtot(τ≤n
I X) for all

n ≥ N . It suffices to show that Hmtot(τ≤n
I X) = 0 for all n. We proceed by induction

on n (for a fixed m). For n≪ 0, (tot(τ≤n
I X))m = 0. Assume that Hmτ≤n−1

I (X) = 0
and consider the short exact sequence of double complexes

0→ τ≤n−1
I X → τ≤n

I X → Y → 0,
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where Y = (Bn,•
I X

f−→ Zn,•
I X) is concentrated on the columns n−1 and n. Applying

tot, we get an exact sequence of complexes

(2.9.1) 0→ tot(τ≤n−1
I X)→ tot(τ≤n

I X)→ tot(Y )→ 0.

We have a quasi-isomorphism tot(Y )[n] ≃ Cone((−1)nf) → Hn,•
I (X). It follows

that tot(Y ) is acyclic. Taking the long exact sequence associated to (2.9.1), we get

Hmtot(τ≤n
I X) ≃ Hmtot(τ≤n−1

I X) = 0.

Corollary 2.9.2. Let X be a biregular double complex such that X•,j is acyclic for
every j (namely, every row of X is acyclic). Then tot(X) is acyclic.

A similar statement holds for columns of X: if X i,• is acyclic for every i, then
tot(X) is acyclic.

Proof. By assumption, H i,j
I (X) = 0 and the proposition applies.

Corollary 2.9.3. Let f : X → Y be a morphism of biregular double complexes
such that H i,•

I (f) : H i,•
I (X) → H i,•

I (Y ) is a quasi-isomorphism for each i. Then
tot(f) : tot(X)→ tot(Y ) is a quasi-isomorphism.

Proof. We letW = ConeII (f) withW i,j = X i,j+1⊕Y i,j. ThenH i,•
I (W ) ≃ Cone(H i,•

I (f))
is acyclic. By the proposition applied to W , tot(W ) ≃ Cone(tot(f)) is acyclic.

Corollary 2.9.4. Let f : X → Y be a morphism of biregular double complexes such
that f •,j : X•,j → Y •,j is a quasi-isomorphism for each j. Then tot(f) : tot(X) →
tot(Y ) is a quasi-isomorphism.

Proof. By assumption, H i,j
I (f) is an isomorphism and Corollary 2.9.3 applies.

Derived tensor product
Let R be a ring.

The composite functor

C(Mod-R)× C(R-Mod) −⊗R−−−−−→ C2(Ab) tot⊕−−→ C(Ab)

induces a triangulated bifunctor

tot⊕(−⊗R −) : K(Mod-R)×K(R-Mod)→ K(Ab).

Proposition 2.9.5. The triangulated bifunctor

tot⊕(−⊗R −) : K(Mod-R)×K−(R-Mod)→ K(Ab).

admits a left derived bifunctor

−⊗LR − : D(Mod-R)×D−(R-Mod)→ D(Ab)

such that for all M ∈ K−(R-Mod) with projective components and L ∈ K(Mod-R),
we have

L⊗LRM
∼−→ tot⊕(L⊗RM).
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Proof. Note that R-Mod admits enough projectives. By Proposition 2.8.13, it suf-
fices to show that for L ∈ C(Mod-R), M ∈ C−(R-Mod), Mn projective for all n,
with L or M acyclic, tot⊕(L⊗RM) is acyclic. If M is acyclic, then the image of M
in K−(R-Mod) is zero and the assertion is trivial. Assume now that L is acyclic.
We have L ≃ colimn∈(Z,≤) τ

≤nL. It follows that

tot⊕(L⊗RM) ≃ colim
n

tot⊕(τ≤nL⊗RM).

Since filtered colimits are exact in Ab, we may assume that L ∈ C−(Mod-R). Then
L⊗RM is biregular. For each n, since Mn is projective, and hence flat, L⊗Mn is
acyclic. Thus tot⊕(L⊗RM) is acyclic by Corollary 2.9.2.

By duality, we get the following.

Proposition 2.9.6. The triangulated bifunctor

tot⊕(−⊗R −) : K−(Mod-R)×K(R-Mod)→ K(Ab).

admits a left derived bifunctor

−⊗LR − : D−(Mod-R)×D(R-Mod)→ D(Ab)

such that for all L ∈ K−(Mod-R) with projective components and M ∈ K(R-Mod),
we have

L⊗LRM
∼−→ tot⊕(L⊗RM).

The functors defined in Propositions 2.9.5 and 2.9.6 are isomorphic when re-
stricted to D−(Mod-R) × D−(R-Mod). Moreover, for L ∈ D≤a(Mod-R), M ∈
D≤b(R-Mod), L⊗LM ∈ D≤a+b(Ab).

Definition 2.9.7. For L ∈ D(Mod-R), M ∈ D(R-Mod), with L ∈ D− or M ∈
D−, we define the hyper Tor by

TorRn (L,M) = H−n(L⊗LRM).

As usual, we drop the word “hyper” when L and M are concentrated in degree
0. For X ∈ Mod-R and Y ∈ R-Mod, TorRn (X,−) is the n-th left derived functor
of X ⊗R − and TorRn (−, Y ) is the n-th left derived functor of − ⊗R Y . We have
TorRn (X, Y ) = 0 for n < 0 and TorR0 (X, Y ) = X ⊗R Y .

Proposition 2.9.8. Let Y be a left R-module. Then the following conditions are
equivalent:

(1) Y is flat;
(2) TorR1 (X, Y ) = 0 for all right R-module X;
(3) TorRn (X, Y ) = 0 for all right R-module X and all n ≥ 1.

Proof. (3) =⇒ (2). Obvious.
(2) =⇒ (1). Since TorR1 (−, Y ) = 0, the long exact sequence implies that Y is

flat.
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(1) =⇒ (3). Let X ′ → X be a projective resolution of X, giving rise to the exact
sequence

· · · → X ′−1 → X ′0 → X → 0.

Since Y is flat, the induced sequence

· · · → X ′−1 ⊗R Y → X ′0 ⊗R Y → X ⊗R Y → 0.

is exact. Thus X⊗LRY ≃ X ′⊗RY ≃ X⊗RY in D(Ab). It follows that TorRn (X, Y ) =
0.

Corollary 2.9.9. Let
0→ F ′ → F → F ′′ → 0

be a short exact sequence of R-modules.
(1) If F ′′ is flat, then for any right R-module X, the induced sequence

0→ X ⊗R F ′ → X ⊗R F → X ⊗R F ′′ → 0

is exact.
(2) If F and F ′′ are flat, then F ′ is flat.
(3) If F ′ and F ′′ are flat, then F is flat.

Proof. This follows from Propositions 2.7.12 and 2.9.8. We recall the proof for the
convenience of the reader. The long exact sequence has the form

TorRn+1(X,F ′′)→ TorRn (X,F ′)→ TorRn (X,F )→ TorRn (X,F ′′).

(1) For n = 0, we get the injectivity of X ⊗R F ′ → X ⊗R F .
(2) For n ≥ 1, we have TorRn+1(X,F ′′) = TorRn (X,F ) = 0, which implies

TorRn (X,F ′) = 0 by the long exact sequence. Hence F ′ is flat.
(3) For n ≥ 1, TorRn (X,F ′) = TorRn (X,F ′′) = 0, which implies TorRn (X,F ) = 0

by the long exact sequence. Hence F is flat.

Warning 2.9.10. If F ′ and F are flat, F ′′ is not flat in general.

Remark 2.9.11. By (1) and (2) above and Proposition 2.7.8, the full subcategory of
R-Mod spanned by flat R-modules is (X⊗R−)-projective for every right R-module
X.

Corollary 2.9.12. Let L ∈ C(Mod-R), M ∈ C(R-Mod). If L ∈ C−(Mod-R)
with flat components, or M ∈ C−(R-Mod) with flat components, then we have

L⊗LRM
∼−→ tot⊕(L⊗M).

Proof. We treat the case M ∈ C−(R-Mod), the other case being similar. Choose
a quasi-isomorphism f : M ′ → M , where M ′ ∈ C−(R-Mod) has projective com-
ponents. Then L ⊗LR M ≃ tot⊕(L ⊗R M ′) and the cone of morphism tot⊕(L ⊗R
f) : tot⊕(L⊗RM ′)→ tot⊕(L⊗RM) is isomorphic to tot⊕(L⊗R Cone(f)), which is
acyclic by the lemma below. Thus tot⊕(L⊗R f) is a quasi-isomorphism.
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Lemma 2.9.13. Let L ∈ C(Mod-R), M ∈ C−(R-Mod). Assume M acyclic and
Mn flat for all n. Then tot⊕(L⊗RM) is acyclic.

Proof. We have L ≃ colimn∈(Z,≤) τ
≤nL. It follows that

tot⊕(L⊗RM) ≃ colim
n

tot⊕(τ≤nL⊗RM).

Since filtered colimits are exact in Ab, we may assume that L ∈ C−(Mod-R). Then
L⊗RM is biregular. Since M is acyclic, M splits into short sequences

0→ ZnM →Mn → Zn+1M → 0.

We prove that ZnM is flat for all n by descending induction. For n ≫ 0, Mn = 0.
If Zn+1M is flat, then, by Corollary 2.9.9, ZnM is flat. It follows that for each i,
Li⊗RM splits into short exact sequences, and hence is acyclic. Thus tot⊕(L⊗RM)
is acyclic by Corollary 2.9.2.

Proposition 2.9.14. We have an isomorphism L ⊗LR M ≃ M ⊗LRop L, natural in
L ∈ D(Mod-R) and M ∈ D−(R-Mod). Here on the right hand side we regard
L ∈ D(Rop-Mod) and M ∈ D(Mod-R).

Proof. We may assume M ∈ C−(R-Mod) with flat components. Then the isomor-
phism is given by the isomorphism of double complexes L⊗RM ≃M ⊗Rop L.

Example 2.9.15. Let R be a ring. Let r ∈ R be an element that is not a left
zero-divisor. In other words, R r×−→ R is an injection. Then the right R-module
R/rR has the following projective resolution: 0→ R

r×−→ R→ R/rR→ 0. For any
left R-module M , R/rR⊗LRM is computed by the complex M r×−→M put in degrees
−1 and 0. Thus TorR1 (R/rR,M) ≃ {m ∈ M | rm = 0} is the r-torsion subgroup
of M , which explains the notation Tor. If r is neither a left zero-divisor nor a right
zero-divisor, then we get

R/rR⊗LRM [−1] ≃ RHomR(R/Rr,M)

by comparing with Example 2.8.23. In particular, if R is a PID and r, s ∈ R are
nonzero, then

R/rR⊗LR R/sR ≃ R/(r, s)R⊕R/(r, s)R[1].

Example 2.9.16. Let A be an abelian group. Then

TorR1 (Q/Z, A) ≃ TorR1 (colim
n∈N×

1
n
Z, A) ≃ colim

n∈N×
TorR1 ( 1

n
Z, A) ≃ Ator

is the torsion subgroup of A.

Example 2.9.17. Let R be a commutative ring and I ⊆ R an ideal generated
by a regular sequence f1, . . . , fr. Then (R/I) ⊗LR (R/I) ≃ K(f1, . . . , fr) ⊗R R/I ≃⊕r

n=0(R/I)(
r
n)[n].
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Derived tensor product and derived Hom
Let R and S be rings. We have the following derived functors

−⊗LS − : D((R, S)-Mod)×D−(S-Mod)→ D(R-Mod),
−⊗LR − : D−(Mod-R)×D((R, S)-Mod)→ D(Mod-S),

RHomR-Mod : D((R, S)-Mod)×D+(R-Mod)→ D(S-Mod),
RHomR-Mod : D−(R-Mod)×D((R, S)-Mod)→ D(Mod-S),
RHomMod-S : D((R, S)-Mod)×D+(Mod-S)→ D(Mod-R),
RHomMod-S : D−(Mod-S)×D((R, S)-Mod)→ D(R-Mod).

Theorem 2.9.18. We have isomorphisms

(L⊗LRM)⊗LS N ≃ L⊗LR (M ⊗LS N),(2.9.2)
RHomR-Mod(M ⊗LS N,K) ≃ RHomS-Mod(N,RHomR-Mod(M,K)),(2.9.3)
RHomMod-S(L⊗LRM,P ) ≃ RHomMod-R(L,RHomMod-S(M,P )),(2.9.4)

natural in L ∈ D−(Mod-R), M ∈ D((R, S)-Mod), N ∈ D−(S-Mod), K ∈
D+(R-Mod), P ∈ D+(Mod-S).

Proof. We may assume K,P ∈ C+ with injective components and L,N ∈ C−

with projective components (for the first isomorphism it suffices to take L,N ∈ C−

with flat components). Then the isomorphisms are given by isomorphisms of triple
complexes.

Corollary 2.9.19. We have isomorphisms

HomD(R-Mod)(M ⊗LS N,K) ≃ HomD(S-Mod)(N,RHomR-Mod(M,K)),
HomD(Mod-S)(L⊗LRM,P ) ≃ HomD(Mod-R)(L,RHomMod-S(M,P )),

natural in K,L,M,N, P as in the theorem.

Proof. This follows from the theorem by taking H0.

Proposition 2.9.20. Let R→ S be a ring homomorphism. We have isomorphisms

(L⊗LR S)⊗LS N ≃ L⊗LR N,(2.9.5)
RHomR-Mod(N,K) ≃ RHomS-Mod(N,RHomR-Mod(S,K)),(2.9.6)
RHomS-Mod(S ⊗LR K ′, N) ≃ RHomR-Mod(K ′, N),(2.9.7)

natural in N ∈ D(S-Mod), L ∈ D−(Mod-R), K ∈ D+(R-Mod), K ′ ∈ D−(R-Mod).

For N ∈ D− (resp. D+), the first and second (resp. third) isomorphism is a
special case of the theorem.

Proof. We may assume L ∈ C− with flat components, K ∈ C+ with injective
components, and K ′ ∈ C− with projective components. Then Ln⊗RS is a flat right
S-module, HomR-Mod(S,Kn) is an injective S-module and S ⊗R K ′n is a projective
S-module.
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Remark 2.9.21. The derived functors and natural isomorphisms above all extend
to unbounded derived categories. In particular, for M ∈ D((R, S)-Mod),

M ⊗LS − : D(R-Mod)→ D(S-Mod)

is left adjoint to

RHomR(M,−) : D(S-Mod)→ D(R-Mod).

Flat dimension
The following generalizes Proposition 2.9.8.

Proposition 2.9.22. Let Y be a left R-module and let m ≥ 0 be an integer. The
following conditions are equivalent:

(1) There exists a flat resolution Y ′ of Y concentrated in [−m+ 1, 0].
(2) TorRm(X, Y ) = 0 for every right R-module X.
(3) TorRn (X, Y ) = 0 for every right R-module X and n ≥ m.
(4) −⊗LR Y carries D≥0(Mod-R) to D≥−m+1(Ab).

Proof. (1) =⇒ (4). Indeed for L ∈ C≥0(Mod-R), L ⊗LR Y ≃ tot(L ⊗R Y ), and the
latter is concentrated in [−m+ 1,+∞).

(4) =⇒ (3) =⇒ (2). Trivial.
(2) =⇒ (1). For m = 0, taking X = R, we get Y = 0. For m ≥ 1, we apply the

lemma below (with k = m− 1) to get the flat resolution.

Lemma 2.9.23 (Dimension shifting). Let 0 → Y ′ → F−k+1 → · · · → F 0 → Y be
an exact sequence of left R-modules with F i flat. Then TorRn (X, Y ′) ≃ TorRn+k(X, Y )
for n ≥ 1.

Proof. Decomposing the exact sequence into short exact sequences, we reduce by
induction to the case k = 1. In this case, the assertion follows from the long exact
sequence.

Definition 2.9.24. Let X be a right R-module and let Y be a left R-module. The
flat dimensions (or Tor-dimensions) of X and Y are defined to be

fl.dim(X) = sup{n ∈ Z | TorRn (X, Y ) ̸= 0 for some Y },
fl.dim(Y ) = sup{n ∈ Z | TorRn (X, Y ) ̸= 0 for some X}.

The weak dimension of R is defined to be

w.dim(R) = sup{n ∈ Z | TorRn (X, Y ) ̸= 0 for some X, Y }.

The above dimensions take values in Z≥0 ∪ {±∞}. Proposition 2.9.22 gives
equivalent conditions for fl.dim(Y ) < m. We have fl.dim(Y ) = −∞ if and only if
Y = 0. By definition,

w.dim(R) = sup
X∈Mod-R

fl.dim(X) = sup
Y ∈R-Mod

fl.dim(Y ),

so that w.dim(Rop) = w.dim(R).
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Remark 2.9.25. Since projective modules are flat, we have

fl.dim(X) ≤ proj.dim(X), fl.dim(Y ) ≤ proj.dim(Y ),
w.dim(R) ≤ min{l.gl.dim(R), r.gl.dim(R)}.

The following generalizes the two special cases of Example 2.6.20.

Proposition 2.9.26. Let R → S be a ring homomorphism and N an S-module.
Then

fl.dimR(N) ≤ fl.dimS(N) + fl.dimR(S),
proj.dimR(N) ≤ proj.dimS(N) + proj.dimR(S),

inj.dimR(N) ≤ inj.dimS(N) + fl.dim(SR).

Proof. For anyR-module L, the left-hand side of (2.9.5) belongs toD≤fl.dimS(N)+fl.dimR(S).
For anyR-moduleK, the right-hand side of (2.9.6) belongs toD≤proj.dimS(N)+proj.dimR(S)

by Remark 2.8.19. For any R-module K ′, the left-hand side of (2.9.7) belongs to
D≤inj.dimS(N)+fl.dim(SR).

Projective dimension revisited
Proposition 2.9.27. Let R be a ring and f ∈ R a central element that is not a
zero-divisor. Let N ̸= 0 be an R/fR-module such that proj.dimR/fR(N) <∞. Then

proj.dimR(N) = 1 + proj.dimR/fR(N).

Proof. Let d = proj.dimR/fR(N). By Proposition 2.9.26, we have proj.dimR(N) ≤
1 + d. We proceed by induction on d.

(1) Case d = 0. Since fN = 0, N is not a projective R-module. Thus
proj.dimR(N) = 1.

(2) Case d = 1. Assume proj.dimR(N) ≤ 1. Take a projective resolution of the
R-module N of length 1:

0→ Q→ P → N → 0.
Applying R/fR ⊗LR − to the above exact sequence, we get the long exact sequence
of R/fR-modules

0→ TorR1 (R/fR,N)→ Q/fQ→ P/fP → N → 0.

Since Q/fQ and P/fP are projective R/fR-modules and proj.dimR/fR(N) = 1 ≤ 2,
TorR1 (R/fR,N) is a projective R/fR-module. However, TorR1 (R/fR,N) ≃ N
by Example 2.9.15. This contradicts the assumption that d = 1. Therefore,
proj.dimR(N) = 2.

(3) Case d ≥ 2. Take a short exact sequence of R/fR-modules

0→M → P ′ → N → 0

with P ′ a projectiveR/fR-module. Then proj.dimR/fR(M) = d−1. Thus proj.dimR(M) =
d and proj.dimR(P ) = 1 by induction hypothesis. Therefore, proj.dimR(N) = d+ 1
by Lemma 2.9.28 below.
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Lemma 2.9.28. Let 0 → M ′ → M → M ′′ → 0 be a short exact sequence in an
abelian category A. We denote the projective dimensions of M ′,M,M ′′ by d′, d, d′′,
respectively. Then d ≤ max(d′, d′′) and equality holds unless d′′ = d′ + 1.

Proof. This follows easily from the long exact sequence for Ext. Letm = max(d′, d′′).
Let N be an object of A. For i > m, we have an exact sequence

0 = Exti(M ′′, N)→ Exti(M,N)→ Exti(M ′, N) = 0.

Thus Exti(M,N) = 0 for all N , or equivalently d ≤ m.
Assume d′′ ̸= d′ + 1. We have an exact sequence

Extm−1(M ′, N)→ Extm(M ′′, N) f−→ Extm(M,N) g−→ Extm(M ′, N)→ Extm+1(M ′′, N) = 0.

Now either m = d′ or m = d′′ > d′ + 1. If m = d′, then g is nonzero for some N .
If m = d′′ > d′ + 1, then the first term of the above sequence is 0 and consequently
f is nonzero for some N (in fact f is an isomorphism in this case). In both cases,
Extm(M,N) is nonzero for some n. Therefore, d = m.

Remark 2.9.29. By the lemma, the following holds.
(1) If d′ < d, then d′′ = d.
(2) If d′ > d, then d′′ = d′ + 1.
(3) If d′ = d, then d′′ ≤ d′ + 1.

Warning 2.9.30. The assumption proj.dimR/fR(N) <∞ in Proposition 2.9.27 can-
not be dropped. For example, for k a field, R = k[t], we have proj.dimR/t2R(R/tR) =
∞ (Example 2.8.26) and proj.dimR(R/tR) = 1.

Corollary 2.9.31. Let R be a ring and let f1, . . . , fr be a regular sequence in R. Let
Ir = (f1, . . . , fr). Then, for any R/I-module N satisfying proj.dimR/Ir

(N) <∞, we
have proj.dimR(N) = r + proj.dimR/Ir

(N). In particular, proj.dimR(R/Ir) = r.

Proof. We proceed by induction on r. The case r = 0 is trivial. For r > 0,

proj.dimR(N) = r − 1 + proj.dimR/Ir−1(N) = r + proj.dimR/Ir
(N)

by induction hypothesis and Proposition 2.9.27.

Künneth formula
Proposition 2.9.32 (Künneth formula for hyper Tor). Assume that R is left and
right hereditary. Let L ∈ D(Mod-R), M ∈ D(R-Mod) such that either (a) L,M ∈
D−, or (b) L ∈ Db, or (c) M ∈ Db. Then we have a split short exact sequence

0→
⊕

l+m=−n
(H lL⊗R HmM) f−→ TorRn (L,M) g−→

⊕
l+m=1−n

TorR1 (H lL,HmM)→ 0.

Here f and g are induced by

H lL⊗R HmM ≃ TorRn (τ≤lL, τ≤mM)→ TorRn (L,M),
TorRn (L,M)→ TorRn (τ≥lL, τ≥mM) ≃ TorR1 (H lL,HmM).

The splitting is not canonical.



2.9. DERIVED TENSOR PRODUCT 121

Proof. We may assume L ∈ Db. By Proposition 2.6.29, we have

TorRn (L,M) ≃
⊕
l,m

Torl+m+n(H lK,HmL).

Remark 2.9.33. Recall that the singular (resp. cellular) (co)homology of a topolog-
ical space (resp. CW complex) X with coefficients in an abelian group M is defined
by

Hn(X,M) = H−n(C•(X)⊗M), Hn(X,M) = HnHom•(C•(X),M).

Here C•(X) ∈ C(−∞,0](Ab) denotes the singular (resp. cellular) chain complex,
which is a complex of free abelian groups. In other words,

Hn(X,M) = Torn(C•(X),M), Hn(X,M) = Extn(C•(X),M).

Since Z is hereditary, we get split short exact sequences

0→ Hn(X)⊗M → Hn(X,M)→ Tor1(Hn−1(X),M)→ 0,
0→ Ext1(Hn−1(X),M)→ Hn(X,M)→ Hom(Hn(X),M)→ 0,

where Hn(X) = Hn(X,Z). These sequences are known as universal coefficient the-
orems.

For topological spaces X and Y , the Eilenberg-Zilber theorem provides an iso-
morphism C•(X × Y ) ≃ tot(C•(X) ⊗ C•(Y )) in K(Ab). (For CW complexes, we
have an isomorphism in C(Ab).) Thus we have Hn(X ×Y ) ≃ Torn(C•(X), C•(Y )).
Applying the Künneth formula, we get a split short exact sequence

0→
⊕

l+m=n
Hl(X)⊗Hm(Y )→ Hn(X × Y )→

⊕
l+m=n−1

Tor1(Hl(X), Hm(X))→ 0.

This is also called the Künneth formula.

More flatness tests
First we present Lambek’s theorem. Let R be a ring. Given a left R-module M , the
character module of M is M∗ = HomZ(M,Q/Z),4 which is a right R-module. Recall
that Q/Z is an injective Z-module. It has the following “cogenerator” property.

Lemma 2.9.34. For any abelian group A and nonzero element x ∈ A, there exists
a homomorphism of abelian groups f : A→ Q/Z with such that f(x) ̸= 0.

Proof. There exists a nonzero homomorphism Zx → Q/Z. Since Q/Z is injective,
this extends to a homomorphism A→ Q/Z.

Remark 2.9.35. It follows that every abelian group can be embedded into a product
of Q/Z. Such a product is sometimes said to be “cofree”.

4In the literature the character module is often denoted by M ′ rather than M∗.
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Lemma 2.9.36. A sequence of R-modules X f−→ Y
g−→ Z is exact if and only if

Z∗ g∗
−→ Y ∗ f∗

−→ X∗ is exact.

Proof. The “only if” part follows from the fact that the functor M 7→ M∗ is exact.
Next we show the “if” part.

Let us first show that gf = 0. Otherwise there exists x ∈ X such that gf(x) ̸= 0,
so that by Lemma 2.9.34 there exists h ∈ Z∗ such that hgf(x) ̸= 0, which implies
f ∗g∗(h) = hgf ̸= 0, contradicting the assumption f ∗g∗ = 0.

Thus gf = 0, or equivalently, im(f) ⊆ ker(g). Assume im(f) ⊋ ker(g). Applying
Lemma 2.9.34 to Y/im(f) we get i ∈ Y ∗ such that i(im(f)) = 0 but i(ker(g)) ̸= 0.
Then f ∗(i) = 0 so that i = g∗(h) = hg, which implies i(ker(g)) = 0. Contradiction.

Theorem 2.9.37 (Lambek). A left R-module M is flat if and only if M∗ is an
injective right R-module.

Proof. This follows from the natural isomorphism HomMod-R(−,M∗) ≃ (−⊗RM)∗

of functors Mod-R→ Ab and the preceding lemma.

Proposition 2.9.38. Let M be a left R-module M . The following conditions are
equivalent:

(1) M is flat.
(2) For every right ideal I ⊆ R, the map I ⊗RM →M is an injection.
(3) For every finitely generated right ideal I ⊆ R, the map I ⊗R M → M is an

injection.

Note that the injectivity in (2) and (3) means that I⊗RM → IM is a bijection.

Proof. (1)⇐⇒ (2). This follows from the natural isomorphism HomMod-R(−,M∗) ≃
(− ⊗R M)∗ together with Baer’s test. By Lambek’s theorem, M is flat if and
only if M∗ is injective. By Baer’s test, this is equivalent to the surjectivity of
HomMod-R(R,M∗) → HomMod-R(I,M∗) for each right ideal I ⊆ R. The surjectiv-
ity means that M∗ → (I ⊗RM)∗ is surjective, or equivalently, that I ⊗RM →M is
an injection.

(2) =⇒ (3). Trivial.
(3) =⇒ (2). I is a filtered colimit of finitely generated right R-modules.

Taking S = Z and P = Q/Z in (2.9.4), we get the following.

Proposition 2.9.39. We have a canonical isomorphism

RHomMod-R(N,M∗) ≃ (N ⊗LRM)∗,

functorial in N ∈ D−(Mod-R) and M ∈ D(R-Mod). In particular, ExtnRop(N,M∗) ≃
TorRn (N,M)∗.

Corollary 2.9.40. Let R be a ring, let M be a left R-module, and let n ≥ 0 be an
integer. Then fl.dim(M) ≤ n if and only if TorRn+1(R/I,M) = 0 for every finitely
generated right ideal I of R.
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Proof. By Proposition 2.9.39, fl.dim(M) ≤ n if and only if inj.dim(M∗) ≤ n. By
Proposition 2.6.25, this is equivalent to ExtnRop(R/I,M∗) = 0 for every right ideal
I ⊆ R. By Proposition 2.9.39 again, this is equivalent to TorRn (R/I,M) = 0 for
every right ideal I ⊆ R. Finally, every right ideal is a filtered colimit of finitely
generated right ideals. Thus TorRn (R/I,M) = 0 for every finitely generated right
ideals I implies that the same holds for every right ideal I.

Alternative proof. The “only if” part is clear. For the “if” part, take an exact se-
quence 0→ N → F−n+1 → · · · → F 0 →M → 0 with F i flat. Then TorR1 (R/I,N) ≃
TorRn+1(R/I,M) = 0. We have an exact sequence

0 = TorR1 (R/I,N)→ I ⊗R N → N.

Thus the map I ⊗R N → N is an injection. It follows from Proposition 2.9.38 that
N is flat.

Corollary 2.9.41. For any ring R, we have

w.dim(R) = sup
I

fl.dim(R/I) = sup
J

fl.dim(R/J),

where I (resp. J) runs through finitely generated left (resp. right) ideals of R.

Definition 2.9.42. We say that an R-module M is finitely presented if there exists
an exact sequence Rm → Rn →M → 0 with m,n ≥ 0.

Finitely presented R-modules are finitely generated. Conversely, R is left Noethe-
rian if and only if every finitely generated R-module is finitely presented [L1, Propo-
sition 4.29].

Proposition 2.9.43. Let M be a finitely generated R-module. Then M is projective
if and only if it is flat and finitely presented.

In particular, if M is finitely presented, then M is projective if and only if M is
flat. We refer the reader to [L1, Theorem 4.30] for a generalization.

Lemma 2.9.44. For left R-modules X and Y , the homomorphism Y ∗ ⊗R X →
HomR(X, Y )∗ carrying g⊗x to f 7→ gf(x) is an isomorphism whenever X is finitely
presented.

Proof. Since both functors Y ∗⊗R− and HomR(−, Y )∗ are right exact, we reduce to
the trivial case where X = Rn.

Proof of Proposition 2.9.43. The “only if” part. It is clear that M is flat. Consider
an epimorphism Rn →M . The kernel is a direct summand of Rn, and hence finitely
generated. Thus M is finitely presented.

The “if” part. Since (−)∗⊗RM ≃ Hom(M,−)∗ is an exact functor, Hom(M,−)
is exact as well.

To state a derived version of Lemma 2.9.44, we need some terminology.
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Definition 2.9.45. We say that an object of D(R-Mod) is pseudo-coherent if it is
isomorphic in D(R-Mod) to a complex X in C−(R-Mod) such that X i is finitely
generated and projective for each i. An R-module M is said to be pseudo-coherent
if M [0] is pseudo-coherent.

Proposition 2.9.46. For X ∈ D−(R-Mod) pseudo-coherent and Y ∈ D+(R-Mod),
we have a canonical isomorphism

Y ∗ ⊗LR X ≃ RHomR(X, Y )∗.

In particular, TorRn (Y ∗, X) ≃ ExtnR(X, Y )∗ for all n ∈ Z.

Proof. We may assume X ∈ C−(R-Mod) and X i is finitely generated and projec-
tive, and hence finitely presented, for each i. In this case, the isomorphism is the
totalization of the isomorphism biregular double complexes

Y ∗ ⊗R X ≃ Hom••
R (X, Y )∗

given by Lemma 2.9.44.

Corollary 2.9.47. Let M be a pseudo-coherent R-module. Then fl.dim(M) =
proj.dim(M).

Proof. We have fl.dim(M) ≤ proj.dim(M). By Proposition 2.9.46, proj.dim(M) ≤
fl.dim(M).

Example 2.9.48. Let R be a left Noetherian ring. Then any finitely generated R-
module M is pseudo-coherent. Indeed, M admits a left resolution by free R-modules
of finite rank.

Corollary 2.9.49 (Auslander). Let R be a left Noetherian ring. For any finitely gen-
erated left R-module M , we have fl.dim(M) = proj.dim(M). Moreover, w.dim(R) =
l.gl.dim(R).

Proof. Since M is pseudo-coherent, the first assertion is a special case of Corollary
2.9.47. Moreover, we have

w.dim(R) = sup
I

fl.dim(R/I) = sup
I

proj.dim(R/I) = l.gl.dim(R)

by Corollaries 2.6.27 and 2.9.41. Here I runs through left ideals of R. (In fact,
without using Corollary 2.9.41, we still get w.dim(R) ≥ l.gl.dim(R), which is enough
to conclude.)

Alternative proof of the first assertion. It suffices to show proj.dim(M) ≤ fl.dim(M) =
n. Consider an exact sequence 0 → N → F−n+1 → · · · → F 0 → M → 0 with
F i = Rni . Then fl.dim(N) = 0, namely that N is flat. Since N is finitely generated,
it is projective. Thus proj.dim(M) ≤ n.

Corollary 2.9.50. Let R be a left and right Noetherian ring. Then w.dim(R) =
l.gl.dim(R) = r.gl.dim(R).
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We make a brief digression on pseudo-coherent complexes.

Lemma 2.9.51. Let R be a ring. Pseudo-coherent complexes in D(R-Mod) span
a triangulated full subcategory.

Proof. It suffices to show that for every distinguished triangle X f−→ Y → Z → X[1]
in D(R-Mod) with X and Y pseudo-coherent, Z is pseudo-coherent. For this we
may assume that X and Y are in C− and X i, Y i are finitely generated and projective
for all i. By Propositions 2.5.26 and 2.5.28, f is represented by a morphism of
complexes. Thus Z ≃ Cone(f) is pseudo-coherent.

Proposition 2.9.52. Let R be a left Noetherian ring. For any pseudo-coherent
complex X ∈ D−(R-Mod), H iX is a finitely generated R-module for each i. Con-
versely, any X ∈ Db(R-Mod) such that H iX is a finite generated R-module for
each i is pseudo-coherent.

Proof. For the first assertion, we may assume that X i is finitely generated and
projective. The assertion is then clear, since H i is a quotient of Zi, which is a
submodule of X i.

For the second assertion, we assume X ∈ D[a,b](R-Mod). We proceed by induc-
tion on b−a. The case b = a is Example 2.9.48. For b > a, consider the distinguished
triangle τ≤aX → X → τ≥a+1X → (τ≤aX)[1]. By induction hypothesis, τ≤aX and
τ≥a+1X are pseudo-coherent. We conclude by Lemma 2.9.51.

Remark 2.9.53. With a bit more work, one can show that for R left Noetherian,
X ∈ D−(R-Mod) is pseudo-coherent if and only if H iX is a finite generated R-
module for each i.

Definition 2.9.54. Let R be a ring. A finitely generated R-module M is said to
be coherent if every finitely generated submodule of M is finitely presented. A ring
R is said to be left coherent if RR is coherent.

Example 2.9.55. (1) Any Noetherian module is coherent. In particular, any left
Noetherian ring is left coherent.

(2) Any left semi-hereditary ring is left coherent.

Remark 2.9.56. One can show that for R left coherent, X ∈ D−(R-Mod) is
pseudo-coherent if and only if H iX is a coherent R-module for each i.

Remark 2.9.57. By a theorem of Chase [L1, Theorem 4.47], a ring R is left coherent
if and only if every product of flat left R-modules is flat. It follows that if R is a left
coherent ring, then an R-module is coherent if and only if it is finitely presented.

Now we return to weak dimensions.

Theorem 2.9.58. Let R be a ring. The following conditions are equivalent:
(1) w.dim(R) ≤ 0.
(2) For each r ∈ R, there exists s ∈ R such that rsr = r.
(3) Every principal left ideal of R is generated by an idempotent.
(4) Every finitely generated left ideal of R is generated by an idempotent.
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Proof. (1) =⇒ (2). Let r ∈ R. Consider the short exact sequence

0→ Rr → R→ R/Rr → 0.

By (1), every R-module is flat. Applying the functor rR⊗R−, we get a commutative
diagram

0 rRr rR r(R/Rr) 0

0 Rr R R/Rr 0

f

g

where the rows are exact and the vertical arrows are injections. We have f(r) =
g(r) = 0. Thus r ∈ rRr.

(2) =⇒ (3). Let I = Rr, r ∈ R. By (2), there exists s ∈ R such that rsr = r.
Let e = sr ∈ I. Then e2 = e. Moreover, r = re ∈ Re. Thus I = Re.

(3) =⇒ (4). Let I ⊆ R be a left ideal generated by n elements. We proceed
by induction on n to show that I is generated by an idempotent. The case n = 0
is trivial. For n ≥ 1, by induction hypothesis, I = Re + Rr for some r ∈ R and
some idempotent e ∈ R. Then I = Re + Rr(1 − e) = Re + Re′, where e′ ∈ R
is an idempotent such that Rr(1 − e) = Re′. Then e′e ∈ Rr(1 − e)e = 0. Thus
e′(e+ e′) = e′2 = e′. It follows that I = Re+Re′ = R(e+ e′). By (3), I is generated
by an idempotent.

(4) =⇒ (1). Let M be a right R-module. By Proposition 2.9.38, to prove that
M is flat, it suffices to show that for every finitely generated left ideal I, the map
M ⊗R I → M is an injection. By (3), I = Re for some idempotent e, and hence a
direct summand of RR = Re⊕R(1− e). Thus M ⊗R I →M is a split injection.

Rings satisfying the equivalent conditions of the theorem are called von Neumann
regular rings. By Condition (4), von Neumann regular rings are left (and right) semi-
hereditary. By Condition (2), a von Neumann regular domain is a division ring.

Remark 2.9.59. A ring is semisimple if and only if it is von Neumann regular and
left (or right) Noetherian. Indeed, the “if” part follows from Corollary 2.9.49 and
the “only if” part is clear.

Example 2.9.60. Boolean rings (r2 = r for all r ∈ R) are von Neumann regular.

Perfect complexes
Let R be a ring.

Definition 2.9.61. A complex K of R-modules is said to be perfect if it is isomor-
phic inD(R-Mod) to a bounded complex of finitely generated projective R-modules.
We let Dperf(R-Mod) denote the full subcategory of D(R-Mod) spanned by perfect
complexes.

Lemma 2.9.62. Let P be a finitely generated projective R-module. Then
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(1) HomR-Mod(P,R) is a projective right R-module and the canonical homomor-
phisms

HomR-Mod(P,R)⊗RM → HomR-Mod(P,M)
f ⊗m 7→ (p 7→ f(p)m)

(2.9.8)

P → HomMod-R(HomR-Mod(P,R), R)
p 7→ (f 7→ f(p))

(2.9.9)

are isomorphisms for every R-module M .
(2) If R is commutative, then the canonical homomorphism

HomR(L,HomR(P,R)⊗RM)→ HomR(P ⊗R L,M)

induced by (2.9.8) and Example 1.4.5 is an isomorphism for all R-modules L
and M .

Proof. This is clear for P free of finite rank. The general case follows immediately.

Remark 2.9.63. (1) One can show that if P is an R-module such that (2.9.8) is
an isomorphism for every R-module M , then P is finitely generated projective.
In fact, it follows from the isomorphism that HomR(P,−) is right exact, or, in
other words, that P is projective.

(2) An R-module such that (2.9.9) is an isomorphism is said to be reflexive. Re-
flexive vector spaces are finite-dimensional. However, reflexive modules are not
necessarily finitely generated or projective in general. For example, for R = Z,
Specker showed that the canonical homomorphism Z⊕N → HomZ(ZN,Z) is
an isomorphism, which implies that Z⊕N and ZN are reflexive. The latter is
not a projective Z-module (Remark 1.8.31). The statement that all projective
Z-modules are reflexive is consistent with ZFC.

Proposition 2.9.64. Let K ∈ Dperf(R-Mod). Then
(1) RHomR-Mod(K,R) is a perfect complex of right R-modules and the canonical

morphisms

RHomR-Mod(K,R)⊗RM → RHomR-Mod(K,M),(2.9.10)
K → RHomMod-R(RHomR-Mod(K,R), R)(2.9.11)

are isomorphisms for all M ∈ D(R-Mod).
(2) If R is commutative, then the canonical morphism

RHomR(L,RHomR(K,R)⊗LRM)→ RHomR(K ⊗LR L,M)

induced by (2.9.10) and (2.9.3) is an isomorphism for all L,M ∈ D(R-Mod)
satisfying L ∈ D− or M ∈ D+.

Proof. We may assume that K is a bounded complex of finitely generated R-modules
and, for (2), that L ∈ C− with projective components orM ∈ D+ with injective com-
ponents. In this case RHomR-Mod(K,R) is computed by Hom•

R-Mod(K,R), which is
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perfect by Lemma 2.9.62. Moreover, the morphisms in question are computed by

Hom•
R-Mod(K,R)⊗RM ≃ Hom•

R-Mod(K,M),
K ≃ Hom•

Mod-R(Hom•
R-Mod(K,R), R),

Hom•
R(tot(K ⊗R L),M)→ Hom•

R(L, tot(Hom•
R(K,R)⊗RM)),

which are isomorphisms by Lemma 2.9.62.

Remark 2.9.65. One can show that if K ∈ D(R-Mod) is such that (2.9.10) is an
isomorphism for every M ∈ D(R-Mod), then K is a perfect complex.

Corollary 2.9.66. The functor RHomR-Mod(−, R) induces an equivalence of trian-
gulated categories Dperf(R-Mod)op → Dperf(Mod-R).

Proof. Indeed, by (2.9.11) applied to R and Rop, RHomMod-R(−, R) is a quasi-
inverse of RHomR-Mod(−, R).

Remark 2.9.67. Let R be a commutative ring. By Proposition 2.9.64 (2) (which
holds in fact for all L,M ∈ D(R-Mod)), we have

HomD(R-Mod)(K ⊗LR L,M)→ HomD(R-Mod)(L,K∨ ⊗LRM),

where K∨ := RHomR(K,R). In other words, K ⊗LR − : D(R-Mod) → D(R-Mod)
is a left adjoint of K∨⊗LR− : D(R-Mod)→ D(R-Mod). Since K ≃ K∨∨, K∨⊗LR−
is also a left adjoint of K ⊗LR −.

Example 2.9.68. Let R be a ring and let f ∈ R be an element that is not a right
zero-divisor. Then R/Rf is perfect. Indeed, it is isomorphic in D(R-Mod) to the
complex R ×f−→ R put in degrees −1 and 0. RHomR-Mod(R/Rf,R) is computed by
the complex R

f×−→ R put in degrees 0 and 1, which is isomorphic to R/fR[−1] if
f is neither a left zero-divisor or a right zero-divisor. In this case, (2.9.10) recovers
(2.9.15).

Example 2.9.69. Let R be a commutative ring and let I ⊆ R be an ideal generated
by a regular sequence f1, . . . , fr. Then R/I is perfect. Indeed, we have a quasi-
isomorphism K(f1, . . . , fr) → R/I. Moreover, we have an isomorphism R/I[−r] ≃
RHomR(R/I,R), computed by the Poincaré duality isomorphismK(f1, . . . , fr)[−r] ≃
Hom•

R(K(f1, . . . , fr), R) in Remark 2.8.36. By (2.9.10), we have

R/I ⊗LRM [−r] ≃ RHomR(R/I,M)

for every M ∈ D(R-Mod). In particular,

TorRr−n(R/I,M) ≃ ExtnR(R/I,M).

Definition 2.9.70. Let R be a ring and K ∈ D(R-Mod). Let I ⊆ Z be an interval.
We say that K has Tor-amplitude in I if N⊗LRK ∈ DI(Ab) for every right R-module
N . We say that K has finite Tor-amplitude (or finite Tor-dimension) if there exists
a finite interval I such that K has Tor-amplitude in I.
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Taking N = R, we see that K has Tor-amplitude in I implies K ∈ DI(R-Mod).

Proposition 2.9.71. A complex K ∈ D(R-Mod) is perfect if and only if K is
pseudo-coherent and has finite Tor-amplitude.

Proof. The “only if” part is clear. Now assume that K is pseudo-coherent and
has Tor-amplitude in [a, b]. To show that K is perfect, we may assume that K ∈
C− and Ki is finitely generated and projective for all i. Then K → τ≥aK is a
quasi-isomorphism and (τ≥aK)a is flat. Moreover, (τ≥aK)a = Ka/BaK is finitely
presented. Indeed, BaK is finitely generated and there exists an R-module P such
that Ka ⊕ P is finitely generated and free. Thus Ka/BaK ≃ (Ka ⊕ P )/(BaK ⊕ P )
is finitely presented. By Proposition 2.9.43, it follows that (τ≥aK)a is projective.
Thus τ≥aK is a bounded complex of finitely generated projective R-modules.

2.10 Homology and cohomology of groups
Let G be a group. Recall that Hn(G,−) is the n-th right derived functor of (−)G
and Hn(G,−) is the n-th left derived functor of (−)G.

Consider the trivial G-action on Z. For any G-module M , we have

MG ≃ HomZG(Z,M), MG = M/IGM ≃ Z⊗ZGM,

where IG = ker(ZG → Z) (the map given by ∑g∈G agg 7→
∑
g∈G ag) is the augmen-

tation ideal. Thus

Hn(G,M) ≃ ExtnZG(Z,M), Hn(G,M) ≃ TorZGn (Z,M).

These groups can be computed using a projective resolution of the ZG-module Z.
Note that the isomorphism ZG ≃ (ZG)op carrying g to g−1 induces an isomorphism
of categories between left G-modules and right G-modules.

Example 2.10.1. For G = Z, we have an isomorphism Z[G] ≃ Z[x, x−1] sending a
generator g of Z to x. The trivial G-module Z admits the free resolution

0→ ZG g−1−−→ ZG→ Z→ 0.

Thus RHomZG(Z,M) is computed by M g−1−−→M put in degrees 0 and 1 and Z⊗LZGM
is computed by M g−1−−→M put in degrees −1 and 0. Therefore,

H0(G,M) ≃MG ≃ H1(G,M),
H1(G,M) ≃M/(g − 1)M ≃ H0(G,M),
Hn(G,M) = Hn(G,M) = 0, n ≥ 2.

Example 2.10.2. For G = Z/mZ, we have an isomorphism ZG ≃ Z[x]/(xm − 1)
sending a generator g of Z to the class of x. Let N = 1 + g+ · · ·+ gm−1 ∈ ZG. The
trivial G-module Z admits the free resolution

· · · → ZG g−1−−→ ZG N−→ ZG g−1−−→ ZG→ Z→ 0.
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Therefore,

Hn(G,M) ≃


MG n = 0
ker(NM)/(g − 1)M n > 0 odd
MG/im(NM) n > 0 even,

Hn(G,M) ≃


M/(g − 1)M n = 0
MG/im(NM) n > 0 odd
ker(NM)/(g − 1)M n > 0 even.

Here NM : M N−→M .

Standard resolution
Definition 2.10.3. The standard resolution of Z is the sequence

· · · → F−1 → F 0 → Z→ 0
of ZG-modules defined as follows. For each n ≥ 0, F−n is the free Z-module on the
set Gn+1 = {(g0, . . . , gn)}, with G-action defined by g(g0, . . . , gn) = (gg0, . . . , ggn).
The differentials are defined by d−n(g0, . . . , gn) = ∑n

i=0(−1)i(g0, . . . , ĝi, . . . , gn), where
ĝi means removing gi.

The sequence is clearly a complex of ZG-modules. It is exact, since the under-
lying complex of Z-modules is homotopy equivalent to zero: id = dh + hd, where
h−n(g0, . . . , gn) = (1, g0, . . . , gn). Note that each F−n is a free ZG-module. Thus
the standard resolution is a free resolution of the ZG-module Z. It follows that
Hn(G,M) is the n-th cohomology group of the complex

0→ C0(G,M)→ C1(G,M)→ · · · ,
and Hn(G,M) is the −n-th cohomology group of the complex

· · · → C1(G,M)→ C0(G,M)→ 0,
where

Cn(G,M) = HomZG(F−n,M), Cn(G,M) = F−n ⊗ZGM.

A basis of the free ZG-module F−n is given by those elements of Gn+1 whose
0-th component is 1. It is convenient to adopt the bar notation:

[g1|g2| . . . |gn] = (1, g1, g1g2, . . . , g1 . . . gn).
We have

d−n[g1|g2| . . . |gn] = g1[g2| . . . |gn]+
n−1∑
i=1

(−1)i[g1| . . . |gigi+1| . . . |gn]+(−1)n[g1|g2| . . . |gn−1].

Thus Cn(G,M) can be identified with the abelian group of maps f : Gn → M ,
with differential given by

(−1)n(dn−1f)(g1, . . . , gn) =

g1f(g2, . . . , gn) +
n−1∑
i=1

(−1)if(g1, . . . , gigi+1, . . . , gn) + (−1)nf(g1, g2, . . . , gn−1).
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H1 and H1

We have
H1(G,M) = Z1(G,M)/B1(G,M),

where Z1(G,M) is the group of crossed homomorphisms (or derivations) f : G→M ,
namely maps satisfying f(gh) = f(g)+gf(h), and B1(G,M) is the group of principal
crossed homomorphisms, namely maps of the form g 7→ gm −m for some m ∈ M .
In particular, for a trivial G-module (namely, abelian group with trivial G-action)
A, we have H1(G,A) ≃ Hom(Gab, A), where Gab = G/[G,G] is the abelianization
of G.

The short exact sequence

(2.10.1) 0→ IG → ZG→ Z→ 0

induces a long exact sequence

0→ H1(G,M)→ IG ⊗ZGM
f−→M →MG → 0,

where f((∑g∈G agg) ⊗m) = ∑
g∈G aggm. For a trivial G-module A, we have f = 0

so that H1(G,A) ≃ IG ⊗ZG A ≃ IG ⊗ZG Z⊗Z A. Applying IG ⊗ZG − to (2.10.1), we
get IG ⊗ZG Z ≃ IG/I

2
G. Moreover, we have an isomorphism IG/I

2
G ≃ Gab carrying

the class of ∑g agg to ∏g ḡ
ag , where ḡ denotes the class of g in Gab. The inverse

carries ḡ to the class of g− 1, which is well-defined since gh−1− (g− 1)− (h− 1) =
(g − 1)(h− 1) ∈ I2

G. Therefore, H1(G,A) ≃ Gab ⊗Z A.

Universal coefficients and duality
Theorem 2.10.4 (Universal coefficients). For any trivial G-module A, we have split
short exact sequences

0→ Hn(G)⊗Z A→ Hn(G,A)→ TorZ1 (Hn−1(G), A)→ 0,
0→ Ext1

Z(Hn−1(G), A)→ Hn(G,A)→ HomZ(Hn(G), A)→ 0,

functorial in A. Here Hn(G) = Hn(G,Z).

Proof. This follows from Künneth formulas over Z and the isomorphisms

(Z⊗LZG Z)⊗LZ A ≃ Z⊗LZG (Z⊗LZ A) ≃ Z⊗LZG A,
RHomZ(Z⊗LZG Z, A) ≃ RHomZG(Z, RHomZ(Z, A)) ≃ RHomZG(Z, A).

Remark 2.10.5. This also follows from the interpretation ofHn(G,A) andHn(G,A)
as the cohomology and homology of any K(G, 1)-space.

Theorem 2.10.6. Let G be a finite group. For any G-module M , we have

Hn(G,M∗) ≃ Hn(G,M)∗.
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Here M∗ = Hom(M,Q/Z) is a right G-module. For any right G-module N , we
set Hn(G,N) = TorZGn (N,Z).

Proof. By Proposition 2.9.46 applied to R = ZG and X = Z, we have

TorZGn (M∗,Z) ≃ ExtnZG(Z,M)∗.

Extensions and crossed extensions
A sequence of homomorphisms of groups G′ f−→ G

g−→ G′′ is said to be exact at G if
im(f) = ker(g). Given a short exact sequence of groups

0→M
i−→ E

π−→ G→ 1,

where M is an abelian group, conjugation in E induces an action of G on M . We
call E an extension of G by the G-module M .

We say that the extension splits if there exists a section of π that is a group
homomorphism. In this case the extension can be identified with the semidirect
product M ⋊G, with i and π given by the inclusion and projection. The underlying
set of M ⋊G is M ×G, with group law given by (m, g)(n, h) = (m+ gn, gh).

Theorem 2.10.7. Let G be a group and M a G-module. There is a canonical
bijection between H2(G,M) and the set of isomorphism classes of extensions of G
by M , carrying the class of f ∈ Z2(G,M) to the class of the group on the set M×G
with group law given by (m, g)(n, h) = (m+ gn+ f(g, h), gh).

In particular, the bijection carries 0 ∈ H2(G,M) to the class of split extensions.
The proof is not hard. See for example [HS, Theorem 10.3].

Example 2.10.8. The class of the extension

0→ Z/mZ→ Z/mnZ→ Z/nZ→ 0

in H2(G,M) with G = Z/nZ, M = Z/mZ, and trivial G-action on M , is given by
the 2-cocycle G2 →M given by the table of carries (ā, b̄) 7→ (⌊a+b

m
⌋ mod n), where

0 ≤ a, b < m are representatives of ā, b̄ ∈ Z/mZ.

Definition 2.10.9. A crossed module is a group homomorphism f : G→ H, equipped
with an action α of H on G, such that the following diagram commutes

G×G f×idG//

��

H ×G idH×f//

α
yy

H ×H

��
G

f // H.

Here the vertical arrows are given by conjugation (g, g′) 7→ gg′g−1.
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Given a crossed module, im(f) is a normal subgroup of H, and ker(f) is central
in G, equipped with an action of coker(f). We get an exact sequence of groups

0→ ker(f)→ G
f−→ H → coker(f)→ 1.

Example 2.10.10. For any group G, the homomorphism G → Aut(G), where
Aut(G) denotes the group of automorphisms of G, given by conjugation is a crossed
module. It gives rise to the exact sequence

0→ Z(G)→ G→ Aut(G)→ Out(G)→ 1,

where Z(G) denotes the center of G and Out(G) denotes the group of outer auto-
morphisms of G.
Definition 2.10.11. Given a group G, a G-module M , and an integer n ≥ 1, a
crossed n-extension of G by M is an exact sequence of groups

0→M
dn−→ Gn−1

dn−1−−−→ . . .
d2−→ G1

d1−→ G0
d0−→ G→ 1,

where d1 is a crossed module, Gi is a G-module for i ≥ 2, d2 : G2 → ker(d1) is a
homomorphism of G-modules, and di is a homomorphism of G-modules for i ≥ 3.
Theorem 2.10.12. Let G be a group and M a G-module. For each integer n ≥ 1,
there is a canonical bijection between Hn+1(G,M) and the set of equivalence classes
of n-extensions of G by M .

The equivalence relation is defined similarly to Yoneda n-extensions.
The theorem was discovered independently by several people in the 1970s. We

refer to [ML1] for a sketch of the history and references.

2.11 Spectral objects and spectral sequences
Let Z̃ be the totally ordered set Z ∪ {±∞}. Let C2 be the partially ordered set of
pairs (p, q) ∈ Z̃2, p ≤ q, corresponding to the category of morphisms of Z̃. In other
words, (p, q) ≤ (p′, q′) if and only if p ≤ p′ and q ≤ q′. Let C3 be set of triples
(p, q, r) ∈ Z̃3, p ≤ q ≤ r, with the following partial order: (p, q, r) ≤ (p′, q′, r′) if and
only if p ≤ p′, q ≤ q′, and r ≤ r′.
Definition 2.11.1. Let D be a triangulated category. A spectral object in D consists
of a functor X : C2 → D and morphisms δ(p, q, r) : X(q, r) → X(p, q)[1], functorial
in (p, q, r) ∈ C3, such that for each (p, q, r),

X(p, q)→ X(p, r)→ X(q, r) δ(p,q,r)−−−−→ X(p, q)[1]

is a distinguished triangle in D.
Definition 2.11.2. Let A be an abelian category. A spectral object in A consists
of functors Hn : C2 → A, n ∈ Z, and morphisms δn(p, q, r) : Hn(q, r) → Hn+1(p, q),
functorial in (p, q, r) ∈ C3, such that for each (p, q, r), the sequence

Hn(p, r)→ Hn(q, r) δn(p,q,r)−−−−−→ Hn+1(p, q)→ Hn+1(p, r)

is exact.
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Example 2.11.3. Let X be a complex in A, equipped with an increasing filtration

0 = X(−∞) ↪→ · · · ↪→ X(p) ↪→ X(p+ 1) ↪→ · · · ↪→ X(∞) = X.

Set X(p, q) = X(q)/X(p). The short exact sequence

0→ X(q)/X(p)→ X(r)/X(p)→ X(r)/X(q)→ 0

induces a distinguished triangle

X(p, q)→ X(p, r)→ X(q, r) δ(p,q,r)−−−−→ X(p, q)[1]

in D(A). We thus obtain a spectral object in D(A).
For any complex X, the following spectral objects induced by truncation are

particularly useful. The spectral object associated to the filtration X(p) = σ≥−pX
is called the first spectral object of X, satisfying X(−p − 1,−p) ≃ Xp[−p]. The
spectral object associated to the filtration X(p) = τ≤pX is called the second spectral
object of X, satisfying X(p−1, p) ≃ (HpX)[−p].5 Note that the first spectral object
of X is functorial in X ∈ C(A) and the second spectral object of X is functorial in
X ∈ D(A).

Remark 2.11.4. LetX be a spectral object inD. Any triangulated functor F : D →
D′ induces a spectral object FX in D′. Any cohomological functor H : D → A
induces a spectral object H(X[n]) in A.

Given a spectral object (Hn, δn) in A, consider the increasing filtration

F q = F qHn(−∞,∞) = im(Hn(−∞, q)→ Hn(−∞,∞)).

We approximate grqFHn(−∞,∞) = F q/F q−1 by

Ep,q
r+1 = im(Hn(q−r, q)→ Hn(q−r, q+r−1))/im(Hn(q−r, q−1)→ Hn(q−r, q+r−1))

for r ≥ 1, where p = n−q. We have Ep,q
2 ≃ Hn(q−1, q) and Ep,q

∞ = grqFHn(−∞,∞).
It follows from the exact sequence

Hn(q − r, q − 1)→ Hn(q − r, q + r − 1)→ Hn(q − 1, q + r − 1)

that Ep,q
r+1 ≃ im(Hn(q − r, q)→ Hn(q − 1, q + r − 1)). The commutative diagram

Hn(q − r, q)
δn

��

// Hn(q − 1, q + r − 1)
δn

��
Hn+1(q − 2r, q − r) // Hn+1(q − r − 1, q − 1)

induces a morphism dp,qr+1 : Ep,q
r+1 → Ep+r+1,q−r

r+1 .
5Our convention for the second spectral object differs from [V2, III.4.3.1] by a shift by 1.



2.11. SPECTRAL OBJECTS AND SPECTRAL SEQUENCES 135

Definition 2.11.5. Let a ∈ Z. A spectral sequence (Ep,q
r )r≥a in A is a family

of objects Ep,q
r in A for p, q ∈ Z and r ∈ Z≥a equipped with differentials dr =

dp,qr : Ep,q
r → Ep+r,q−r+1

r such that drdr = 0, and isomorphisms of Ep,q
r+1 with the

cohomology of Ep−r,q+r−1
r

dr−→ Ep,q
r

dr−→ Ep+r,q−r+1
r at Ep,q

r . For each r, the collection
(Ep,q

r , dp,qr ) is sometimes called a page of the spectral sequence.
Given a spectral sequence (Ep,q

r )r≥a and objects (Hn)n∈Z in A, an abutment,
usually denoted by Ep,q

a ⇒ Hn, consists of an increasing filtration F qHn on each
Hn and an identification of Ep,q

∞ = grqFHn = F qHn/F q−1Hn with a subquotient of
Ep,q
r , compatible with the identification of Ep,q

r+1 with a subquotient of Ep,q
r . Here

p = n− q.
We say that the spectral sequence with abutment converges if for every pair

(p, q), there exists b ≥ a such that Ep,q
b = Ep,q

∞ . We say that the spectral sequence
with abutment degenerates at Eb if Ep,q

b = Ep,q
∞ for all p, q, which is equivalent to

dp,qr = 0 for all r ≥ b, p, q in addition to convergence.

Theorem 2.11.6. Let (Hn, δn) be a spectral object in A. The construction above
provides a spectral sequence with abutment

Ep,q
2 = Hp+q(q − 1, q)⇒ Hn(−∞,∞).

We refer to [V2, Sections II.4.2, II.4.3] for a proof (cf. [CE, Section XV.7]).

Remark 2.11.7 (Page shift). Given a spectral sequence (Ep,q
r )r≥a and c ∈ Z, we

can produce a spectral sequence (E ′p,q
r )r≥a−c by E ′p,q

r = Ep+cn,q−cn
r+c , where n = p +

q. Moreover, an abutment Ep,q
a ⇒ Hn is the same as an abutment E ′p,q

a−c ⇒ Hn.
Applying this to the spectral sequence in the theorem, we get a spectral sequence
with abutment

E ′p,q
1 = Hp+q(−p− 1,−p)⇒ Hn(−∞,∞).

Example 2.11.8. Let F : D∗(A) → D(B) be a triangulated functor and let X ∈
C∗(A), where ∗ is either empty or one of +,−, b. Then the first and second spectral
objects of X induce, via F and the cohomological functor H0 : D(B)→ B, spectral
sequences with abutments:

Ep,q
1 = HqF (Xp)⇒ Hn(FX),(2.11.1)

E ′p,q
2 = HpF (HqX)⇒ Hn(FX).(2.11.2)

In the first spectral sequence, dp,q1 = HqF (dpX).

Example 2.11.9 (Grothendieck spectral sequence). Let F : A → B, G : B → C
be additive functors between abelian categories. Let I ⊆ A be an F -injective
subcategory and let J ⊆ B be a G-injective subcategory. Assume that F carries I
into J . By Proposition 2.7.13, R(GF ) ≃ (RG)(RF ). As a special case of (2.11.2),
for X ∈ A (or more generally X ∈ D+(A)), we get a converging spectral sequence

Ep,q
2 = RpGRqF (X)⇒ Rn(GF )(X).

Example 2.11.10 (Hochschild–Serre spectral sequence). Let G be a group and H
a normal subgroup. Given a G-module M , MH is equipped with an action of G/H.
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This defines a functor F : ZG-Mod→ Z(G/H)-Mod, that fits into a commutative
square

ZG-Mod Z(G/H)-Mod

ZH-Mod Ab,

F

ρ ϕ

F ′

where F ′ = (−)H , ρ is restriction of scalars and ϕ is the forgetful functor. Since
ZG is a free right ZH-module, ρ preserves injectives. Thus the above commutative
square induces a commutative square

D+(ZG-Mod) D+(Z(G/H)-Mod)

D+(ZH-Mod) D+(Ab).

RF

ρ ϕ

RF ′

In particular, the abelian group underlying RnFM can be identified with Hn(H,M).

The composite of ZG-Mod F−→ Z(G/H)-Mod (−)G/H

−−−−→ Ab is (−)G. The Grothendieck
spectral sequence for this composition takes the following form: for every G-module
M (or more generally M ∈ D+(G-Mod)), we have

Ep,q
2 = Hp(G/H,Hq(H,M))⇒ Hn(G,M).

Example 2.11.11. Let m > 0 be an odd integer and let Dm = Cm ⋊ C2 be the
dihedral group, where Cm = Z/mZ and C2 = Z/2Z. Consider the Hochschild–Serre
spectral sequence

Ep,q
2 = Hp(C2, H

q(Cm,Z))⇒ Hn(Dm,Z).

We have

Hq(Cm,Z) ≃


Z q = 0
Z/mZ q > 0 even
0 q odd.

Let C2 = {1, σ}. One can check that σ acts on H2j(Cm,Z) by multiplication by
(−1)j. It follows that

Ep,q
2 =


Z p = q = 0
Z/2Z q = 0, p > 0 even
Z/mZ p = 0, 4 | q > 0
0 otherwise.
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part of which is shown below:

Z/mZ 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

Z 0 Z/2Z 0 Z/2Z

Thus the spectral sequence degenerates at E2. Since extensions of Z/2Z by Z/mZ
are trivial, we have

Hn(Dm,Z) ≃


Z n = 0
Z/2Z n ≡ 2 (mod 4)
Z/2mZ 4 | n
0 n odd.
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Summary of properties of rings
and modules

Properties of rings

field +3

��u}

division
ring

+3

��

semisimple +3

��

von Neumann regular
left

Noetherian

ks

z�

valuation
ring

��

PID

u}

+3

��

PLID

!)

��

Bézout
domain

left
Noeth.

5=

"*

Dedekind +3

��

left hereditary
left Noetherian

+3

��

left hereditary

��
Prüfer
domain

left
Noetherian

KS

+3

��

left semi-hereditary

��

left Noetherian

dl

commutative
domain

+3 domain left Noetherian +3 left coherent

Properties of R-modules
free +3 projective

R PLID or R = S[x1, . . . , xn]
ks +3

KS

R quasi-Frobenius

��

flat
finitely presented

ks +3 torsion-free
R Prüfer domain

ks

injective +3 divisible
(R domain)R Dedekind or PLID

ks

Noetherian +3 coherent +3 finitely
presented

+3 finitely
generatedprojective

ks

Here S denotes a PID.
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